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Introduction
Why have I dedicated a whole handout to one inequality! This must be an important result,
and I can assure you it is, as you will find out. But first, to approach this inequality
most generally, formally and rigorously, we will have to define various ideas such as the
vector space and inner product.
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§1 Vector Spaces
We begin by defining the notion of a vector space, however before that we must also
be clear on the algebraic structures of fields.

§1.1 Fields and a Vector Space
Fields are algebraic structures which come as an extension of the concept of groups,
since these are structures that are characterised by two operations.1

Definition 1.1 (Field) — A field is a set F with two operations

+ : F× F→ F, (a, b) 7→ a+ b, (addition)
∗ : F× F→ F, (a, b) 7→ a ∗ b, (multiplication)

that satisfy the following axioms:

(i) (F,+) is a commutative group (also known as an Abelian group). We call
the identity element in this group zero, and write 0. We denote the inverse
element of a ∈ F by −a.

(ii) (F \ {0}, ∗) is a commutative group.a We call the identity element in this
group unit, and write 1. We denote the inverse element of a ∈ F \ {0} by a−1.

(iii) The distributive laws hold, i.e. for all a, b, c ∈ F we have

a ∗ (b+ c) = a ∗ b+ a ∗ c
(a+ b) ∗ c = a ∗ c+ b ∗ c

aNote that the set notation F \ {0} means ‘the set of all elements of F excluding 0’.

If the reader is aware of rings, a commutative ring R with unit is called a field, if 0 6= 1
and every a ∈ R \ {0} is invertible. We may also say that every field is a commutative
ring with unit, but the converse does not hold.

With these fundamental ideas done, we can now use the field in our definition of a vector
space.

Intuitively, a vector space V over a field F (also known as an ‘F-vector space’) is a space
with two operations:

• We can add two vectors u,v ∈ V to obtain u + v ∈ V.

• We can multiply a scalar λ ∈ F with a vector v ∈ V to obtain λv ∈ V.

However, these two operations must satisfy certain axioms before we can call it a vector
space, so let’s formalise this now.

Definition 1.2 (Vector Space) — An F-vector space (or a vector space over F) is
an (additive) commutative group (V,+) together with a function called scalar

1In actual fact, fields are a special type of ring, but for the purposes of this document we do not need
to be worried about rings, and a field can be defined without it.
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multiplication:

F× V → V
(λ,v) 7→ λ · v

satisfying the axioms:

(i) λ(µv) = λµv for all λ, µ ∈ F, v ∈ V. (associativity)

(ii) λ(u + v) = λu + λv for all λ ∈ F, u,v ∈ V. (distributivity in V)

(iii) (λ+ µ)v = λv + µv for all λ, µ ∈ F, v ∈ V. (distributivity in F)

(iv) 1v = v for all v ∈ V. (identity)

§1.2 Inner Product
When generalised to all vector spaces, the Cauchy-Schwarz inequality involves use of the
inner product.

The inner product is a binary operation2, which associates each pair of vectors in the
space with a scalar quantity known as the inner product of the vectors, often denoted
with angle brackets.

Definition 1.3 (Inner Product) — Let V be a vector space over field F. An inner
product 〈·, ·〉 is a function V × V → F satisfying:

(i) for all v ∈ V, 〈v,v〉 ≥ 0 and 〈v,v〉 = 0 ⇐⇒ v = 0.

(ii) for all u,v ∈ V, 〈u,v〉 = 〈v,u〉.

(iii) for all u,v,w ∈ V and for all a, b ∈ F, 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉

It follows from this definition that an inner product space is a vector space V over the
field F together with an inner product, given by the map:

〈·, ·〉 : V × V → F.

§1.3 Norm and Distance
In the Cauchy-Schwarz inequality we also have the norm at play.

The norm can be thought of as a notion of length of a vector.

Definition 1.4 (Norm) — Let (V, 〈·, ·〉) be an inner product space. The norm
function is a function V → F denoted as ‖·‖, and given by

‖v‖ =
√
〈v,v〉

2An operation whose input(s) and output(s) are in the same set (so preserves closure).
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Example 1.5 (Euclidean Norm) The Euclidean norm in Rn is given by

‖v‖ =
√
〈v,v〉 =

√
(v1)2 + (v2)2 + · · ·+ (vn)2

A norm in a vector space then induces the notion of distance between two vectors,
which is defined by the length of their difference.

Definition 1.6 (Distance) — Let (V, 〈·, ·〉) be an inner product space, and ‖·‖ be its
associated norm. The distance between u and v ∈ V is given by

distance(u,v) = ‖u− v‖

Example 1.7 (Euclidean Distance) The Euclidean distance between two vectors
u,v in Rn is given by

‖u− v‖ =
√

(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2

§1.4 Sets of Vectors
When we are dealing with sets of vectors, as we are, there are some important terminology
to be aware of, specifically linearly dependent and linearly independent (the former
more so than the latter in our case).

Definition 1.8 (Linearly Dependent) — A set of vectors v1, . . . ,vn from a vector
space V is linearly dependent if there exist scalars λ1, λ2, . . . , λn, not all zero, such
that

λ1v1 + λ2v2 + · · ·+ λnvn = 0

where 0 denotes the zero vector.

Thus, a set of vectors is linearly dependent if and only if each vector in the set can be
written as a linear combination of the others.

Definition 1.9 (Linearly Independent) — A set of vectors is linearly independent if
it is not linearly dependent, that is if the equation

λ1v1 + λ2v2 + · · ·+ λnvn = 0

can only be satisfied by λi = 0 for i = 1, . . . , n.
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§2 Cauchy-Schwarz

Theorem 2.1 (Cauchy-Schwarz Inequality) Let u and v be arbritary vectors in an
inner product space over the scalar field F, where F is the field of real numbers
R or complex numbers C. It follows that,

|〈u,v〉| ≤ ‖u‖ ‖v‖

and equality holds if and only if u and v are linearly dependent.

Remark 2.2 If we have this set of two vectors u,v, these vectors are linearly
dependent if and only if they are collinear i.e. one is a scalar multiple of the
other.

§2.1 Proof I

Proof (I). We begin by definition of the inner product that 〈v + λw,v + λw〉 ≥ 0
for some scalar λ.

〈u + λv,u + λv〉 ≥ 0

It then follows from the linearity of the inner product that,

〈u,u〉+ 2λ〈u,v〉+ λ2〈v,v〉 ≥ 0

Here, we have a quadratic in λ, which is greater than or equal to 0. As a result,
there is a repeated root or no R solutions for λ and thus we have the discriminant
≤ 0.

∴ 4λ2〈u,v〉2 − 4λ2〈u,u〉〈v,v〉 ≤ 0
〈u,v〉2 ≤ 〈u,u〉〈v,v〉 = ‖u‖2 ‖v‖2

Hence, |〈u,v〉| ≤ ‖u‖ ‖v‖ .

§2.2 Proof II

Proof (II). Let’s define a vector z as follows,

z := u− 〈u,v〉
〈v,v〉v

Now, let’s consider 〈z,v〉. It follows from the linearity of the inner product that,

〈z,v〉 =
〈

u− 〈u,v〉
〈v,v〉

〉
= 〈u,v〉 − 〈u,v〉

〈v,v〉 〈v,v〉 = 0

This shows that z is orthogonal to v, and hence u is written as the sum of two
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orthogonal vectors, so we can apply Pythagoras’.

u = 〈u,v〉
〈v,v〉v + z =⇒ ‖u‖2 =

(〈u,v〉
〈v,v〉

)2
‖v‖2 + ‖z‖2

= 〈u,v〉
2

(‖v‖)2 ‖v‖
2 + ‖z‖2

= 〈u,v〉
2

‖v‖2
+ ‖z‖2

≥ 〈u,v〉
2

‖v‖2

Hence, |〈u,v〉| ≤ ‖u‖ ‖v‖ .

§2.3 Proof III

Proof (III). We can consider the expression 1
‖v‖2

∥∥∥‖v‖2 u− 〈u,v〉v
∥∥∥2

for vectors
u,v.

We can expand this expression by the definition of the norm and then the linearity
of the inner product.

1
‖v‖2

∥∥∥‖v‖2 u− 〈u,v〉v
∥∥∥2

= 1
‖v‖2

〈
‖v‖2 u− 〈u,v〉v, ‖v‖2 u− 〈u,v〉v

〉
= 1
‖v‖2

(
‖v‖4 〈u,u〉 − 2 ‖v‖2 〈u,v〉〈u,v〉+ 〈u,v〉2〈v,v〉

)
= 1
‖v‖2

(
‖v‖4 ‖u‖2 − 2 ‖v‖2 〈u,v〉2 + ‖v‖2 〈u,v〉2

)
= ‖u‖2 − 〈u,v〉2

Now, observe that the original expression 1
‖v‖2

∥∥∥‖v‖2 u− 〈u,v〉v
∥∥∥2
≥ 0, and so

‖u‖2 − 〈u,v〉2 ≥ 0

Hence, |〈u,v〉| ≤ ‖u‖ ‖v‖ .
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§3 Other Results
§3.1 Triangle Inequality

Corollary 3.1 (Triangle Inequality) Let u and v be vectors in Rn. Let ‖·‖ denote
the norm of a vector. Then,

‖u + v‖ ≤ ‖u‖+ ‖v‖

Remark 3.2 Notice that here also, equality holds if and only if u and v are
linearly dependent, which corresponds to u,v being collinear, and so the triangle is
degenerate.

The following diagram illustrates the triangle inequality, for some two vectors u,v, which
may seem like an ‘obvious result’.

u

v

u

v

θ

u+ v

θ

Clearly, if we reduce the angle θ to 0, then the vectors u,v become collinear and this is
where we obtain our degenerate triangle case.

§3.2 Probability Theory
Let X and Y be random variables. We can define an inner product on the set of
random variables using the expectation of their product.

〈X,Y 〉 := E (XY )

The Cauchy-Schwarz inequality then becomes:

Theorem 3.3 (Cauchy-Schwarz for the expectation of random variables)

|E(XY )|2 ≤ E(X2) E(Y 2)

We can use this to prove the following corollary known as the covariance inequal-
ity.

Corollary 3.4 (Covariance Inequality)

Cov (X,Y )2 ≤ Var(X) Var(Y )
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Proof.

Cov (X,Y )2 = E ((X − E(X))(Y − E(Y )))2

≤ E((X − E(X))2) · E((Y − E(Y ))2)
= Var(X) ·Var(Y )

§3.3 Hölder’s Inequality
It may be said that Cauchy-Schwarz is a special case of Hölder’s Inequality, or it
may be that Hölder’s Inequality is a generalisation of Cauchy-Schwarz.

Either way, the two inequalities are inextricably linked.

Theorem 3.5 (Hölder’s Inequality) For sequences ai, bi, . . . , zi ∈ R, Hölder’s Inequal-
ity states that

(a1 + a2 + · · ·+ an)λa . . . (z1 + z2 + · · ·+ zn)λz ≥ aλa
1 bλb

1 . . . zλz
1 + · · ·+aλa

n b
λb
n . . . zλz

n

for all λa + λb + · · ·+ λz = 1.

[In the case of λa = λb = 1
2 , the inequality reduces to Cauchy-Schwarz.]

Remark 3.6 A more rigorous and generalised definition involves first defining
the notion of a measure space, so for the purposes of this document I have only
brushed the surface of Hölder’s inequality.
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§4 Examples
§4.1 Olympiads
We can convert our Cauchy-Schwarz inequality as expressed in theorem 2.1 into one
which applies to sequences of real numbers by picking the vector space Rn.

Theorem 4.1 (Cauchy-Schwarz for Sequences) For all real numbers ai and bi, we
have (

n∑
i=1

a2
i

)(
n∑
i=1

b2
i

)
≥
(

n∑
i=1

aibi

)2

with equality if and only if ai = kbi for some constant k ∈ R+, for all i = 1, . . . , n
which have aibi 6= 0.

Example 4.2 (IMO 1995) Let a, b, c be positive real numbers such that abc = 1.
Prove that

1
a3(b+ c) + 1

b3(c+ a) + 1
c3(a+ b) ≥

3
2

Solution. We begin by making the substitution x = 1
a , y = 1

b , z = 1
c . Then by the

given condition, xyz = 1. Now, notice

1
a3(b+ c) + 1

b3(c+ a) + 1
c3(a+ b) = 1

1
x3

(
1
y + 1

z

) + 1
1
y3

(
1
z + 1

x

) + 1
1
z3

(
1
x + 1

y

)
= x2

1
x

(
y+z
yz

) + y2

1
y

(
z+x
zx

) + z2

1
z

(
x+y
xy

)
= x2

y + z
+ y2

z + x
+ z2

x+ y

But by Cauchy-Schwarz, if we go back to theorem 4.1, we can let a1 = √x+ y, a2 =√
y + z, a3 =

√
z + x and b1 = x√

y+z , b2 = y√
z+x , b3 = z√

x+y . This then directly
allows us to apply the inequality, giving

[(x+ y) + (y + z) + (z + x)] ·
(

x2

y + z
+ y2

z + x
+ z2

x+ y

)
≥ (x+ y + z)2

=⇒ x2

y + z
+ y2

z + x
+ z2

x+ y
≥ x+ y + z

2

It then follows from the AM-GM inequality that x+y+z
2 ≥ 3

2
3√xyz = 3

2 .

Equality holds if and only if x = y = z = 1 ⇐⇒ a = b = c = 1.

Remark 4.3 If you are aware of convex functions and Jensen’s inequality, we
may also have proceeded from attempting to show x2

y+z + y2

z+x + z2

x+y ≥
3
2 by applying

Jensen’s to the function f(x, y) = x2

y .
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§4.2 Vectors
We can visualise the Cauchy-Schwarz inequality applied to two vectors in R2, as shown
below.

θ

|u| cos θ

u

v

u · v = |u||v| cos θ

In the above, we use the fact that the inner product in R2 is the dot product and this
is given by the formula above. And, since cos θ ≤ 1, u · v ≤ |u||v|.

Example 4.4 Given that vectors x and y satisfy

x + y (x · y) = a

for a fixed vector a, show that

|x|
(
1 + |y|2

)
≥ |a| ≥ |x|

and explain the circumstances under which equality is achieved, and describe the
relation between x,y and a in these circumstances.

Solution. Let’s first consider |a|2.

|a|2 = a · a = (x + y(x · y)) · (x + y(x · y))
= x · x + 2(x · y)(x · y) + y · y(x · y)(x · y)

= |x|2 + (x · y)2
(
2 + |y|2

)
∴ (x · y)2 = |a|

2 − |x|2

2 + |y|2

But, by Cauchy-Schwarz, (x · y)2 ≤ |x|2|y|2.

=⇒ |a|2 − |x|2

2 + |y|2 ≤ |x|2|y|2

|a|2 − |x|2 ≤ |x|2|y|4 + 2|x|2|y|2

∴ |a|2 ≤ |x|2
(
1 + |y|2

)2
=⇒ |a| ≤ |x|

(
1 + |y|2

)
We also know that (x · y)2 ≥ 0 =⇒ |a|2−|x|2

2+|y|2 ≥ 0. But since 2 + |y|2 > 0, we must
have |a| ≥ |x|.

∴ |x| ≤ |a| ≤ |x|
(
1 + |y|2

)
Equality is achieved when |x| = |a| and y = 0, provided |x| 6= 0.
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If x = 0, for equality with |a|, we require a = 0.

If x 6= a, then |a| = |x|
(
1 + |y|2

)
. There exist infinite solutions (|a|, |x|, |y|).

e.g. |a| = 4, |x| = 2, |y| = 1.

§4.3 Integrals

Theorem 4.5 (Cauchy-Schwarz for Integrals) For ‘well-behaved’ functions f, g :
[a, b] 7→ R, (∫ b

a
f(x) g(x) dx

)2

≤
(∫ b

a
(f(x))2 dx

)(∫ b

a
(g(x))2 dx

)

Example 4.6 Show that for t > 0,

et − 1
et + 1 ≤

t

2

Solution. We can use theorem 4.5, by choosing f(x), g(x), a, b appropriately. Let’s
begin by setting f(x) = 1, g(x) = ex.

∴

(∫ b

a
ex dx

)2

≤
(∫ b

a
dx
)(∫ b

a
e2x dx

)

=⇒
(
eb − ea

)2
≤ (b− a) · 1

2
(
e2b − e2a

)
So, from this let’s try a = 0, b = t.(

et − 1
)2
≤ t

2
(
e2t − 1

)
Now we can use the fact that we require t > 0, so et − 1 > 0, and by difference of
two squares factorisation on the RHS, we get

et − 1 ≤ t

2
(
et + 1

)
=⇒ et − 1

et + 1 ≤
t

2
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