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1 Example Problem 1

This is problem 1 from BMO2 2018.

Consider triangle ABC. The midpoint of AC is M . The circle tangent to BC at
B and passing through M meets the line AB again at P . Prove that AB ×BP =
2BM2.

Solution. We see this product that we are required to prove. This resembles ratios of
lengths. I think similar triangles should be screaming out at us.

AB ×BP = 2BM2 =⇒ AB

2BM
=
BM

BP
Point D is the line BM extended out such that M is the midpoint of BD - this gives us
the ‘2BM ’.

Clearly, all that is required is to show 4MPB ∼ 4ABD. By constructing point D, we
have bisecting diagonals (since AM = MC also) so ABCD is parallelogram.

By alternate segment theorem, ∠DBC = ∠MPB. Also, AD ‖ BC so ∠DBC = ∠BDA.

∴ ∠DBA = ∠MPB =⇒ 4MPB ∼ 4ABD (∠PBD common)
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Then, the result follows.

2 Some useful theorems

All of these are indispensable for us to know, and they are very cool indeed. With these
theorems or ‘tools’, we can be in good stead for tackling a huge number of geometry
problems, including within olympiads.

2.1 Intercept Theorem

RTP:
BP

PA
=
BQ

QC

Let’s consider areas.

[BPQ] =
1

2
h ·BP, [AQP ] =

1

2
h · PA =⇒ [BPQ]

[AQP ]
=
BP

PA

[BPQ] =
1

2
h′ ·BQ, [PCQ] =

1

2
h′ ·QC =⇒ [BPQ]

[CQP ]
=
BQ

QC

But [CQP ] = [AQP ] ∴
BP

PA
=
BQ

QC

.

2.2 Angle Bisector Theorem
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By sine rule,

a

sin∠ADB
=

x

sin∠DBA
b

sin (180◦ − ∠ADB)
=

y

sin∠DBA
=⇒ a

b
=
x

y

2.3 Ceva’s Theorem

This theorem addresses concurrency.

Considering areas,

AE

EC
=

[AEB]

[CBE]
=

[AEO]

[COE]
=

[AEB]− [AEO]

[ABE]− [COE]
=
AOB

BOC
1

Similarly,
CF

FB
=

[COA]

[AOB]
,
BD

DA
=

[BOC]

[COA]

∴
AE

EC
× CF

FB
× BD

DA
= 1

2.4 Menelaus’ Theorem

This theorem addresses collinearity.

1Note: if a
b
= c

d
=⇒ a

b
= a−c

b−d
, by considering a

b
= a(b−d)

b(b−d)
.
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Drop perpendiculars (‘orthogonal projections’) from A, B, C to line DEF to form points
A′, B′, C ′ respectively. By similar triangles

AD

DB
=
AA′

BB′
,
BE

EC
=
BB′

CC ′
,
CF

FA
=
CC ′

AA′

∴
AD

DB
× BE

EC
× CF

FA
= 1

2.5 Simson Line

A very interesting and neat result.2 For a point P on the circle, the three closest points
to P on lines AB, BC and AC are collinear. Please note that the proof has been left
out.

Points D, E, F are collinear.

2.6 Power of a Point

4PAD and 4PCB are indirectly similar. It follows that

PA× PB = PC × CD

Also, 4PAT is indirectly similar to 4PTB (using the alternate segment theorem), so

PA× PB = PT 2

2This completely unlocks BMO1 2015 Q5, if you happen to care.
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3 Example Problem 2

This is problem 3 from BMO2 2017.

Consider a cyclic quadrilateral ABCD. The diagonals AC and BD meet at P , and
the rays AD and BC meet at Q. The internal angle bisector of ∠BQA meets AC
at R and the internal angle bisector of ∠APD meets AD at S. Prove that RS is
parallel to CD.

Solution. Clearly, from the mentions of angle bisectors in the question, angle bisector
theorem must be at play.

By the angle bisector theorem:

AP

DP
=
AS

DS
(4DAP ) (1)

QA

QC
=
AR

CR
(4QAC) (2)

By the intercept theorem, if RS ‖ CD ⇐⇒ AS
SD

= AR
CR

(4DAC). So must show
(1) = (2). Focus on the L.H.S.

4PDA ∼ 4PBC =⇒ AP

DP
=
BP

CP

Power of a point states QC ×QB = QD ×QA =⇒ QA
QC

= QB
QD

.

Let ∠BDA = α = ∠BCA, ∠CDB = β. By sine rule in 4QDB,

QB

sin (180◦ − α)
=

QD

sin β
=⇒ QB

QD
=

sinα

sin β

In 4CPB,
BP

sinα
=

CP

sin β
=⇒ BP

CP
=

sinα

sin β

∴
QB

QD
=
BP

CP
=
QA

QC
=
AP

DP
=⇒ AS

DS
=
AR

CR
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4 Further complex theorems (less relevant)

Here are some really interesting, and only slightly more complex, ideas in geometry.
These are not explicitly required as theorems to recall for solving problems in many
competitions, though help in gaining a better command of Euclidean geometry overall.

4.1 Generalising Power of a Point

These three results about tangents, secants and chords are unified by the idea that the
quantity PA × PB depends on the relative positions of the point P and the circle, but
does not on which chord, secant or tangent is used to define A and B.

Prompted by this, we refer PA × PB as the power of P with respect to the circle. It
is helpful to make this a signed quantity. This can be done by assigning an arbitrary
direction to the line through P , and then regarding PA and PB as directed or signed
lengths.

Thus,

1. if P is outside the circle, it will have positive power.

2. if P is inside the circle, PA and PB are in opposite directions so the power of P is
negative.

3. the power of a point P on the circle is 0.

Let the circle have centre O and radius R. If P is outside the circle, the power of P is
PT 2 and by Pythagoras, this is OP 2 −R2.

Exactly the same formula is valid for P inside the circle.

If you are familiar with vector notation, then a neat way to define the power of P with
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respect to the circle is PA.PB.3

You’ll be familiar with the Cartesian equation of a circle with centre (a, b) and radius r.

(x− a)2 + (y − b)2 = r2

which expands to
x2 + y2 − 2ax− 2by + a2 + b2 − r2 = 0

Now, the power of a point P = (x, y) defined by PO2 −R2 is (x− a)2 + (y − b)2 − r2 or
equivalently x2 + y2 − 2ax− 2by + a2 + b2 − r2.

Now suppose you have two circles with different centres (a1, b1) and (a2, b2) and radii r1
and r2. The power of P with respect to both these circle will be equal precisely when

(x− a1)2 + (y − b1)2 − r21 = (x− a2)2 + (y − b2)2 − r22
which can be rewritten to

2(a1 − a2)x+ 2(b1 − b2)y + k = 0

Now that’s brilliant! This is the equation of a line known as the radical axis of the two
circles.

4.2 Radical Axes

Given two circles, the radical axis of the two circles is the set of points with equal power
with respect to both the circles.

The radical axis is perpendicular to the line of centres.

1. If the two circles intersect, then their radical axis is the straight line through their
points of intersection.

2. If the two circles are tangent, then their radical axis is the line tangent to both
circles at their point of tangency.

3. If the two circles do not intersect, then their radical axis is the line directly in
between them.

For three circles with centres which are not collinear, then the radical axes meet at a
unique point (concurrent) and they specifically meet at the radical centre.

3This quantity is positive when both vectors point the same way and negative when they are pointing in
opposite directions.
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4.3 Isogonal Conjugate

The term isogonal means ‘to have similar angles’. Consider triangle ABC and P a point
in the plane that does not lie on one of the sides of ABC. The line AP can be reflected
in the internal or external angle bisector at A. Similar treatment can be done at vertex
B and C and these newly reflected lines meet at a point P ′, the isogonal conjugate of P .

The incentre and three excentres of ABC are the isogonal conjugates of themselves.

4.4 Nine Point Circle

This is just in general a really cool fact, so I thought to end the theory side of things
with it. It’s rare in a setup that we find nine concyclic points! These nine points are:

• Midpoint of each side.

• Perpendiculars from opposite vertices.

• Midpoint of line from each vertex to orthocentre.
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