Some Euclidean Geometry for Mathematical Olympiads

Krish Nigam

1 Example Problem 1

This is problem 1 from BMO2 2018.
Consider triangle $A B C$. The midpoint of $A C$ is M. The circle tangent to $B C$ at B and passing through M meets the line $A B$ again at P. Prove that $A B \times B P=$ $2 B M^{2}$.

Solution. We see this product that we are required to prove. This resembles ratios of lengths. I think similar triangles should be screaming out at us.

Point D is the line $B M$ extended out such that M is the midpoint of $B D$ - this gives us the ' $2 B M$ '.

Clearly, all that is required is to show $\triangle M P B \sim \triangle A B D$. By constructing point D, we have bisecting diagonals (since $A M=M C$ also) so $A B C D$ is parallelogram.
By alternate segment theorem, $\angle D B C=\angle M P B$. Also, $A D \| B C$ so $\angle D B C=\angle B D A$.

$$
\therefore \angle D B A=\angle M P B \Longrightarrow \triangle M P B \sim \triangle A B D \quad(\angle P B D \text { common })
$$

Then, the result follows.

2 Some useful theorems

All of these are indispensable for us to know, and they are very cool indeed. With these theorems or 'tools', we can be in good stead for tackling a huge number of geometry problems, including within olympiads.

2.1 Intercept Theorem

$$
\text { RTP: } \frac{B P}{P A}=\frac{B Q}{Q C}
$$

Let's consider areas.

$$
[B P Q]=\frac{1}{2} h \cdot B P,[A Q P]=\frac{1}{2} h \cdot P A \Longrightarrow \frac{[B P Q]}{[A Q P]}=\frac{B P}{P A}
$$

$$
\begin{aligned}
{[B P Q]=} & \frac{1}{2} h^{\prime} \cdot B Q,[P C Q]=\frac{1}{2} h^{\prime} \cdot Q C \Longrightarrow \frac{[B P Q]}{[C Q P]}=\frac{B Q}{Q C} \\
& \text { But }[C Q P]=[A Q P] \therefore \frac{B P}{P A}=\frac{B Q}{Q C}
\end{aligned}
$$

2.2 Angle Bisector Theorem

By sine rule,

$$
\begin{aligned}
\frac{a}{\sin \angle A D B} & =\frac{x}{\sin \angle D B A} \\
\frac{b}{\sin \left(180^{\circ}-\angle A D B\right)} & =\frac{y}{\sin \angle D B A} \Longrightarrow \frac{a}{b}=\frac{x}{y}
\end{aligned}
$$

2.3 Ceva's Theorem

This theorem addresses concurrency.

Considering areas,

$$
\left.\frac{A E}{E C}=\frac{[A E B]}{[C B E]}=\frac{[A E O]}{[C O E]}=\frac{[A E B]-[A E O]}{[A B E]-[C O E]}=\frac{A O B}{B O C}\right]^{1}
$$

Similarly,

$$
\begin{gathered}
\frac{C F}{F B}=\frac{[C O A]}{[A O B]}, \frac{B D}{D A}=\frac{[B O C]}{[C O A]} \\
\therefore \frac{A E}{E C} \times \frac{C F}{F B} \times \frac{B D}{D A}=1
\end{gathered}
$$

2.4 Menelaus' Theorem

This theorem addresses collinearity.

[^0]Drop perpendiculars ('orthogonal projections') from A, B, C to line $D E F$ to form points $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. By similar triangles

$$
\begin{aligned}
\frac{A D}{D B}= & \frac{A A^{\prime}}{B B^{\prime}}, \frac{B E}{E C}=\frac{B B^{\prime}}{C C^{\prime}}, \frac{C F}{F A}=\frac{C C^{\prime}}{A A^{\prime}} \\
& \therefore \frac{A D}{D B} \times \frac{B E}{E C} \times \frac{C F}{F A}=1
\end{aligned}
$$

2.5 Simson Line

A very interesting and neat result .2 For a point P on the circle, the three closest points to P on lines $A B, B C$ and $A C$ are collinear. Please note that the proof has been left out.

Points D, E, F are collinear.

2.6 Power of a Point

$\triangle P A D$ and $\triangle P C B$ are indirectly similar. It follows that

$$
P A \times P B=P C \times C D
$$

Also, $\triangle P A T$ is indirectly similar to $\triangle P T B$ (using the alternate segment theorem), so

$$
P A \times P B=P T^{2}
$$

[^1]
3 Example Problem 2

This is problem 3 from BMO2 2017.
Consider a cyclic quadrilateral $A B C D$. The diagonals $A C$ and $B D$ meet at P, and the rays $A D$ and $B C$ meet at Q. The internal angle bisector of $\angle B Q A$ meets $A C$ at R and the internal angle bisector of $\angle A P D$ meets $A D$ at S. Prove that $R S$ is parallel to $C D$.

Solution. Clearly, from the mentions of angle bisectors in the question, angle bisector theorem must be at play.

By the angle bisector theorem:

$$
\begin{align*}
& \frac{A P}{D P}=\frac{A S}{D S} \quad(\triangle D A P) \tag{1}\\
& \frac{Q A}{Q C}=\frac{A R}{C R} \quad(\triangle Q A C) \tag{2}
\end{align*}
$$

By the intercept theorem, if $R S \| C D \Longleftrightarrow \frac{A S}{S D}=\frac{A R}{C R}(\triangle D A C)$. So must show (1) $=(2)$. Focus on the L.H.S.

$$
\triangle P D A \sim \triangle P B C \Longrightarrow \frac{A P}{D P}=\frac{B P}{C P}
$$

Power of a point states $Q C \times Q B=Q D \times Q A \Longrightarrow \frac{Q A}{Q C}=\frac{Q B}{Q D}$.
Let $\angle B D A=\alpha=\angle B C A, \angle C D B=\beta$. By sine rule in $\triangle Q D B$,

$$
\frac{Q B}{\sin \left(180^{\circ}-\alpha\right)}=\frac{Q D}{\sin \beta} \Longrightarrow \frac{Q B}{Q D}=\frac{\sin \alpha}{\sin \beta}
$$

In $\triangle C P B$,

$$
\begin{gathered}
\frac{B P}{\sin \alpha}=\frac{C P}{\sin \beta} \Longrightarrow \frac{B P}{C P}=\frac{\sin \alpha}{\sin \beta} \\
\therefore \frac{Q B}{Q D}=\frac{B P}{C P}=\frac{Q A}{Q C}=\frac{A P}{D P} \Longrightarrow \frac{A S}{D S}=\frac{A R}{C R}
\end{gathered}
$$

4 Further complex theorems (less relevant)

Here are some really interesting, and only slightly more complex, ideas in geometry. These are not explicitly required as theorems to recall for solving problems in many competitions, though help in gaining a better command of Euclidean geometry overall.

4.1 Generalising Power of a Point

These three results about tangents, secants and chords are unified by the idea that the quantity $P A \times P B$ depends on the relative positions of the point P and the circle, but does not on which chord, secant or tangent is used to define A and B.

Prompted by this, we refer $P A \times P B$ as the power of P with respect to the circle. It is helpful to make this a signed quantity. This can be done by assigning an arbitrary direction to the line through P, and then regarding $P A$ and $P B$ as directed or signed lengths.

Thus,

1. if P is outside the circle, it will have positive power.
2. if P is inside the circle, $P A$ and $P B$ are in opposite directions so the power of P is negative.
3. the power of a point P on the circle is 0 .

Let the circle have centre O and radius R. If P is outside the circle, the power of P is $P T^{2}$ and by Pythagoras, this is $O P^{2}-R^{2}$.

Exactly the same formula is valid for P inside the circle.
If you are familiar with vector notation, then a neat way to define the power of P with
respect to the circle is PA.PB $]^{3}$
You'll be familiar with the Cartesian equation of a circle with centre (a, b) and radius r.

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

which expands to

$$
x^{2}+y^{2}-2 a x-2 b y+a^{2}+b^{2}-r^{2}=0
$$

Now, the power of a point $P=(x, y)$ defined by $P O^{2}-R^{2}$ is $(x-a)^{2}+(y-b)^{2}-r^{2}$ or equivalently $x^{2}+y^{2}-2 a x-2 b y+a^{2}+b^{2}-r^{2}$.

Now suppose you have two circles with different centres $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ and radii r_{1} and r_{2}. The power of P with respect to both these circle will be equal precisely when

$$
\left(x-a_{1}\right)^{2}+\left(y-b_{1}\right)^{2}-r_{1}^{2}=\left(x-a_{2}\right)^{2}+\left(y-b_{2}\right)^{2}-r_{2}^{2}
$$

which can be rewritten to

$$
2\left(a_{1}-a_{2}\right) x+2\left(b_{1}-b_{2}\right) y+k=0
$$

Now that's brilliant! This is the equation of a line known as the radical axis of the two circles.

4.2 Radical Axes

Given two circles, the radical axis of the two circles is the set of points with equal power with respect to both the circles.

The radical axis is perpendicular to the line of centres.

1. If the two circles intersect, then their radical axis is the straight line through their points of intersection.
2. If the two circles are tangent, then their radical axis is the line tangent to both circles at their point of tangency.
3. If the two circles do not intersect, then their radical axis is the line directly in between them.

For three circles with centres which are not collinear, then the radical axes meet at a unique point (concurrent) and they specifically meet at the radical centre.

[^2]
4.3 Isogonal Conjugate

The term isogonal means 'to have similar angles'. Consider triangle $A B C$ and P a point in the plane that does not lie on one of the sides of $A B C$. The line $A P$ can be reflected in the internal or external angle bisector at A. Similar treatment can be done at vertex B and C and these newly reflected lines meet at a point P^{\prime}, the isogonal conjugate of P.

The incentre and three excentres of $A B C$ are the isogonal conjugates of themselves.

4.4 Nine Point Circle

This is just in general a really cool fact, so I thought to end the theory side of things with it. It's rare in a setup that we find nine concyclic points! These nine points are:

- Midpoint of each side.
- Perpendiculars from opposite vertices.
- Midpoint of line from each vertex to orthocentre.

[^0]: ${ }^{1}$ Note: if $\frac{a}{b}=\frac{c}{d} \Longrightarrow \frac{a}{b}=\frac{a-c}{b-d}$, by considering $\frac{a}{b}=\frac{a(b-d)}{b(b-d)}$.

[^1]: ${ }^{2}$ This completely unlocks BMO1 2015 Q5, if you happen to care.

[^2]: ${ }^{3}$ This quantity is positive when both vectors point the same way and negative when they are pointing in opposite directions.

