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Functional analysis brings together the ideas of continuity and linear algebra; many
consider this subject the study of infinite dimensional vector spaces. As such, we will
often look at spaces of functions. The ideas formulated here are an important requirement
for further study in many areas of mathematical analysis, including PDEs, stochastic
analysis and quantum mechanics.

In this course, we assume familiarity with the foundations of linear algebra and analysis,
including metric spaces and topological spaces. This documents constitutes my notes
taken from lectures by Dr Pierre-François Rodriguez at Imperial College London.
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§1 Introduction
§1.1 Motivation
Broadly speaking, in this course we are interested in solving linear equations of the form
Ax = y , where x ∈ X, y ∈ Y and X,Y are vector spaces (which we may also refer to as
linear spaces). We have A : X → Y with A linear, i.e. A(αx+ βy) = αA(x) + βA(y).
We want to find x such that the above equation holds, with y ∈ Y and A given.

For X,Y finite dimensional, we have traditional linear algebra, which I hope we’re familiar
with. However, we are concerned with X,Y being infinite dimensional, with topological
properties such as completeness, compactness etc. which come about from a metric
or norm. It will become clear later on as to why certain topological properties like
completeness are nice for us to work with; after all complete normed vector spaces are
given a special name - Banach spaces.

Example 1.1 Consider f ∈ C∞0 (Rn) where

C∞0 (Rn) = {f : Rn → K : f differentiable ∞ often, supp(f) bounded}

and recall that supp(f) = {x ∈ Rn : f(x) 6= 0}. Now, we may be interested in solving
Poisson’s equation −∆u = f . Here ‘A’ is −∆, and the question becomes we want to
find suitable function spaces X,Y to find u.

Note that in the above example an adequate choice of space is necessary to find a solution.
In this course, X,Y are almost always Banach spaces (or even Hilbert spaces).

§1.2 Non-examples
We will begin by presenting some non-examples, in order to demonstrate where things
can go wrong. We adopt the structure (X, d) a metric space, d : X ×X → R+.

1. Take X = Q, d(x, y) = |x− y|, and consider the sequence x1 = 1, xn+1 = 2(1+xn)
2+xn

so (xn) ⊂ Q. Clearly, ∀nxn < xn+1 and 1 ≤ xn < 2. By Bolzano-Weierstrass lim
n→∞

exists, but solving gives xn →
√

2 /∈ Q, even though (xn) is still Cauchy in Q.

This emphasises the importance of requiring the completion of Q in this case, which
is R, i.e. complete spaces are nice.

2. A more relevant example - take X = C([0, 1]), d(f, g) =
∫ 1
0 |f − g| dx, f, g ∈ X and

we define a sequence (fn) ⊂ X with

fn(x) =


0, 0 ≤ x ≤ 1

2
nx− n

2 ,
1
2 < x < 1

2 + 1
n

1, x ≥ 1
2 + 1

n

We can check that (fn) ⊂ X is Cauchy and @f ∈ X such that lim
n→∞ d(fn, f) = 0.

This is an example of a sequence of functions with no converging solution in the
space. Note imagining a picture of the above function is good for intuition.
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Remark 1.2 (Fixes) We present potential fixes to the problems demonstrated in
non-example 2) above.

• We can change the notion of convergence to uniform convergence, in which
case fn as above does not ‘converge’.

• We can X to L1-space, so X = L1([0, 1]) and then fn converges to the indicator
function at 1

2 . Note that the L1-space is complete as we will soon show.

§1.3 Banach Spaces and Examples

Definition 1.3 (Banach Space) — A Banach space is a normed space (X, ‖ · ‖)
which is complete w.r.t ‖ · ‖. Note that the norm induces a metric d(x, y) = ‖x− y‖.

For Banach spaces, there are many key examples to be familiar with when working
through this course. First, take a measure space (X,A, µ), then the ‘Lp-space’, Lp(µ) =
Lp(X,A, µ) = {f : X → R/ : ‖f‖Lp <∞}, where

‖f‖Lp =

(
∫
|f |p dµ)

1
p , p <∞

esssup|f |, p =∞

If two functions are equivalent µ almost-everywhere, they have the same Lp norm. The
choice of measure space is important; in traditional linear algebra, we typically have
X = {1, 2, . . . , n}, A = 2X , µ({k}) = 1 ∀k ∈ X (counting measure).

Then, every function f : X → R is simple, i.e. f is of the form f(x) = ∑n
k=1 f(k)1{k}(x).

This motivates the following norm ‖ · ‖p.

=⇒ ‖f‖pp =
∫
|f |p dµ =

n∑
k=1
|f(k)|p

∫
1{k} dµ =

n∑
k=1
|f(k)|p

So, the finite dimensional space Lp ({1, . . . , n}, µ) ∼= Rn, endowed with the norm given
above ‖f‖p = (∑n

k=1 |f(k)|p)
1
p .

This space is finite dimensional, but we want to go to infinite dimensions! So, let’s send
n→∞. This gives rise to the “little-`-p” space.

Example 1.4 (`p, “little-`-p”) We adopt the same format as demonstrated above,
with X = N = {1, 2, 3, . . . }. Now, every f : X → R is not always simple, since it is
of the form f(x) = ∑∞

k=1 f(k)1{k}(x).

Since f is not a finite sum, we ‘approximate’ f by fn (which is the same sum for f ,
just with n instead of∞) and use monotone convergence to get ‖f‖p`p = ∑∞

k=1 |f(k)|p.

An element of `p, f : X → R f = (f(1), f(2), . . . ) ≡ (f1, f2, . . . ) ≡ (fk)k≥1 is just a
sequence!

∴ `p = {all R-valued sequences f = (fk) :
∞∑
k=1
|f(k)|p <∞}
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Remark 1.5 Note the case p = 1, for `1, is just the space of all absolutely convergent
series. Furthermore, if p =∞ the norm instead becomes ‖f‖∞ = supn |xn|.

However, this example is only for the countably infinite case. Now let’s consider the
uncountable case.

Example 1.6 Again, adopting a similar convention to above, take X = Rn for some
n ∈ N, A the Borel σ-algebra, µ the Lebesgue measure. Then,

‖f‖Lp =
(∫
|f |p dµ

) 1
p

where 1 ≤ p ≤ ∞ and for the p =∞ case we use the esssup, as demonstrated earlier
in this section.

More generally, if X ⊂ Rn is open or closed, then Lp(X,µ) is the set of all measurable
functions f : X → R with finite Lp norm (as given above).

Theorem 1.7 Let (X,A, µ) be any measure space. Then,

i ‖f‖Lp defines a norm ∀p ∈ [1,∞]. (The triangle inequality, also known as
Minkowski’s inequality, is ‖f + g‖p ≤ ‖f‖p + ‖g‖p ∀f, g ∈ Lp(µ).

ii Hölder’s inequality, if 1
p + 1

q = 1, p, q ∈ [1,∞], ∀f ∈ Lp(µ), ∀g ∈ Lq(µ), then
fg ∈ L1(µ) and ‖fg‖1 ≤ ‖f‖p‖g‖q.

iii Lp(µ) is complete.

Remark 1.8 i) and iii) together imply that Lp(µ) is Banach.

§1.3.1 Further examples of Banach spaces

• C([a, b]) = {f : [a, b]→ R continuous} with ‖f‖∞ = sup[a,b] |f(x)|.

• Cr([a, b]) = {f : [a, b]→ R r−times cont. diff’able} with ‖f‖r,∞ = sup[a,b],0≤k≤r |f (k)(x)|.

• Sobolev spaces (not specifically discussed in this course but very relevant for PDEs).

Proposition 1.9 (C([0, 1]), ‖ · ‖∞) is a Banach space.

Proof. The general strategy to prove completeness of some (X, ‖ · ‖) is as follows: given
a Cauchy sequence (fn) ⊂ X, find a candidate limit f . Show limn→∞ ‖fn − f‖ = 0 and
show f ∈ X.

Let (fn) ⊂ C([0, 1]) be Cauchy =⇒ ∀ε > 0, ∃N(ε) s.t. ∀n,m ≥ N , ‖fn − fm‖ < ε.
Consider |fn − fm|, (fn(x)) ⊂ R is a Cauchy sequence in R. By completeness of R, so
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(fn(x)) converges in R to f(x), i.e. limn→∞ |fn(x)− f(x)| = 0∀x ∈ [0, 1].

Going back to C([0, 1]), ∀x,∀n,m ≥ N : |fn(x) − fm(x)| < ε. But, |fn − fm| ≤
‖fn − fm‖∞∀f , so ‖f(x)− fm(x)‖∞ < ε.

We also need to argue that f ∈ C([0, 1]). For any n ∈ N and ∀x, y ∈ [0, 1], |f(x)−f(y)| <
|f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|.

Now apply the ‘ ε3 argument’. Since fn → f , pick n s.t. ‖fn−f‖∞ < ε
3 . So, |fn(x)−f(x)| <

ε
3 , |fn(y) − f(y)| < ε

3 . As n fixed, by continuity of fn ∈ C([0, 1]), pick δ such that
|fn(x)− fn(y)| < ε

3 whenever |x− y| < δ. Then f ∈ C([0, 1]).

Remark 1.10 The above is a well-known result; the uniform convergence limit
of a sequence of continuous is also continuous.

Note that pointwise limits are not always continuous, e.g. fn(x) = xn for x ∈ [0, 1].
Although if we take the space to be L1[0, 1] instead of C[0, 1], then this converges to
an indicator function - L1 is a ‘bigger’ space and C[0, 1] ⊂ L1[0, 1].

For proofs, the following inequalities can be quite useful.

Lemma 1.11 (Triangle-like inequality 1) for |x+ y|p with p ≥ 1, we have

|x+ y|p ≤ (|x|+ |y|)p ≤ 2p max{|x|, |y|}p ≤ 2p(|x|p + |y|p)

Or, for a better bound, we can use the convexity of x 7→ |x|p. Note: f convex if
f
(
x+y

2

)
≤ f(x)+f(y)

2 .

Lemma 1.12 (Triangle-like inequality 2)

|x+ y|p

2p ≤ 1
2 (|x|p + |y|p) =⇒ |x+ y|p ≤ 2p−1 (|x|p + |y|p)
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§2 Linear Spaces
Let (V,⊕,

⊙) be a linear space (or vector space) over (K,+, ·).

Definition 2.1 (Linear Metric Space) — Suppose the linear space, as given above,
has K, V equipped with the metrics ρK, ρV respectively. Then, this linear space is
called a metric linear space if ⊕ and ⊙ are both continuous.

§2.1 Separability
In the following discussion, we take (V, ρ) with V a linear space and ρ a metric, so (V, ρ)
is a metric space (we are not assuming any additional structure so it could e.g. normed,
Banach, Hilbert,... etc.).

Recall the definition of ρ-open balls Bρ(x, ε) = {y ∈ V : ρ(x, y) < ε}, x ∈ V , ε > 0.

Definition 2.2 (Dense) — A subset D ⊂ V is called dense if Bρ(x, ε)∩D 6= ∀x ∈ V ,
ε > 0, (i.e. any open ball of any radius will contain a point of D).

Definition 2.3 (Separable) — V is separable if it has a countable, dense subset.

Proposition 2.4 `p, for p ∈ [1,∞), is separable (where `p is space of all sequences
with finite p-norm).

Note that here `p is actually (`p, ρ), where ρ is the metric induced by ‖ · ‖p.

Proof. Our goal is to find a countable, dense subset. Define D := ⋃
n≥1Dn where

Dk = {(xn) : xn ∈ Q∀n and xn = 0∀n ≥ k} (all rational sequences which eventually
equal zero). Notice Dk

∼= Qk, which is countable so D is the union of countable sets
which is countable.

Therefore we just need to show D is dense. Let x = (xn) ∈ `p. Pick ε > 0, first find
x̃ = (x̃n) with values in Q and |xn − x̃n ≤ ε

2 · 2
−n

p .

=⇒ ‖x− x̃‖p =
∞∑
n=1
|xn − x̃n|p ≤

(
ε

2

)p ∞∑
n=1

2−n ≤
(
ε

2

)p
(1)

Then, x̃ ∈ B(x, ε2 and x̃ ∈ `p (since ‖x̃‖p ≤ ‖x‖p + ‖x − x̃‖p < ∞). Since x̃ ∈ `p,
‖x̃‖p = ∑

n≥1 |x̃n|p <∞, hence can find k = k(x) s.t. ∑n>k ||p <
(
ε
2
)p.

Define y = (x̃1, . . . , x̃k, 0, . . . ) ∈ D, ‖x̃− y‖p < ε
2 . This together with 1 implies

y ∈ B(x, ε).

Proposition 2.5 Lp(Rn), for p ∈ [1,∞), is separable.

The definition of a basis is less clear in infinite dimensions than in finite dimensions,
hence we demonstrate two specific examples of infinite dimensional bases below; Schauder
basis and Hamel basis.
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Definition 2.6 — Take a normed vector space (X, ‖ · ‖). A Schauder basis of X
is a sequence (en), en ∈ X s.t. ∀x ∈ X, ∃(xn) with

lim
n→∞

‖x−
n∑
k=1

xkek‖ = 0

Remark 2.7 In contrast, a Hamel basis is a sequence (en), en ∈ X s.t. ∀x,
∃n, x1, . . . , xn ∈ R s.t. x = ∑n

k=1 xkek (i.e. we can write each x as a finite linear
combination).

Clearly, Hamel basis =⇒ Schauder basis.

Remark 2.8 Note that there exist Banach spaces (even separable spaces) which
do not have a Schauder basis. There is emphasis on separability since if a Banach
space has a Schauder basis then it is separable.

Lemma 2.9 If normed vector space (X, ‖ · ‖) has a Schauder basis, then (X, ‖ · ‖)
is separable.

Proof. Define D := {∑n
i=1 qiei : n ∈ N, qi ∈ Q}. This is clearly countable since Schauder

basis is countable, and we are taking finite linear combinations.

Now we must show it’s dense (i.e. we must show that we can approximate any point in
X by a point in D to arbitrary precision).

Fix x ∈ X, ε > 0. We can find n = n(x, ε) and x1, . . . , xn ∈ R s.t. ‖∑n
i=1 xiei−x‖ < ε

2 (by
definition of Schauder basis). Choose qk ∈ Q for k = 1, . . . , n s.t. |xk − qk| < ε

2n
∑n

i=1 ‖ei‖
(since Q is dense in R).

=⇒ ‖
n∑
k=1

xkek −
n∑
k=1

qkek‖ ≤
n∑
k=1
|xk − qk|‖ek‖ <

ε

2

Example 2.10 `p is separable for p ∈ [1,∞) with Schauder basis en = (0, . . . , 0, 1, 0, . . . ) ∈
`p, where the 1 is in the n-th position.

For Lp, the Schauder basis is made up of so-called ’Haar functions’.

§2.2 Hilbert Spaces
Let H be a vector space over R.

7
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Definition 2.11 (Inner Product) — A bilinear map (i.e left and right linear)
H ×H → R, (x, y) 7→ 〈x, y〉, which is

• symmetric: 〈x, y〉 = 〈y, x〉 ∀x, y ∈ H

• and positive definite: 〈x, x〉 ≥ 0 with equality iff x = 0

is called an inner product over H.

Remark 2.12 (H, 〈·, ·〉) is an inner product space. For example, H = R, 〈x, y〉 = xy
∀x, y ∈ H.

Theorem 2.13 (Cauchy-Scwharz) Let (H, 〈·, ·〉) be an inner product space with
‖x‖ =

√
〈x, x〉. Then,

|〈x, y〉| ≤ ‖x‖ · ‖y‖ ∀x, y ∈ H

Notice that Cauchy-Schwarz is true for all inner product spaces, ad it doesn’t require
any additional structure such as completeness. However, completeness can be extremely
important as we saw with Banach spaces, and adding completeness to inner product
spaces gives rise to the idea of Hilbert spaces.

Definition 2.14 (Hilbert Space) — A Hilbert space is an inner product space
(H, 〈·, ·〉) which is complete with respect to the norm ‖ · ‖ =

√
〈·, ·〉.

Example 2.15 An example of a Hilbert space is L2(µ) for the Lebesgue measure µ
on R and 〈f, g〉 =

∫
fg dµ.

As you can see, here the norm induced by the inner product above is just the
L2-norm.

Theorem 2.16 For Hilbert space H, K ⊂ H subspace which is closed and convex
(i.e. ∀x, y ∈ K, t ∈ [0, 1] then tx + (1 − t)y ∈ K), then ∀y ∈ H, there exists a
unique x0 ∈ K s.t.

δ := inf
x∈K
‖x− y‖ = ‖x0 − y‖

Proof. We can assume y = 0 (else replace K by K − y). If δ = 0, x0 = y and we are
good.

So let δ > 0, then ∃(xn) ⊂ K s.t. limn→∞ ‖xn‖ = δ. We want to show (xn) is Cauchy,
since then this would imply ∃x0 ∈ H s.t. ‖xn − x0‖ → 0 and since K is closed, x0 ∈ K
and we would be done.

Let ε > 0, ∃N s.t. ∀n ≥ N ‖xn‖2 < δ2 + ε2

4 . For all n,m ≥ N ,

‖xn − xm‖2 = 2
(
‖xn‖2 + ‖xm‖2

)
︸ ︷︷ ︸

<4δ2+ε2

−‖xn + xm‖2︸ ︷︷ ︸
≤−4δ2

< ε2

8
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Then xn, xm ∈ K =⇒ xn+xm
2 ∈ K by convexity of K, so ‖xn+xm

2 ‖ ≥ δ.

Lemma 2.17 (Parallelogram Law) For Hilbert space H,

2‖x‖2 + 2‖y‖2 = ‖x+ y‖2 + ‖x− y‖2 ∀x, y ∈ H

Definition 2.18 (Orthogonal) — For x, y,∈ H, x is orthogonal to y, written x ⊥ y,
if 〈x, y〉 = 0.

Definition 2.19 (Orthogonal Complement) — For S ⊂ H, define its orthogonal
complement S⊥ = {y ∈ H : 〈x, y〉 = 0 ∀x ∈ S}.

Remark 2.20 You can show that S⊥, as above, is closed using that 〈·, ·〉 : H×H →
R is continuous.

Corollary 2.21 For H Hilbert, if there exists E ⊂ H closed subspace. Then
H = E

⊕
E⊥ (i.e. ∀x ∈ H,∃e ∈ E, e′ ∈ E⊥ s.t. x = e+ e′), and E ∩ E⊥ = {0}.

Proof. If x ∈ E ∩ E⊥, then 〈x, x〉 = 0 =⇒ x = 0.

∀x ∈ H, define K = E + x which is closed and convex. Then by theorem 2.16, ∃x0 ∈ E
s.t. ‖x− x+ 0‖ ≤ ‖x− η‖ ∀η ∈ E (x0 unique).

Consider map ψ : t ∈ [0, 1] 7→ 1
2‖(x− x0) + tη‖2 has t = 0 as its minimum.

0 = ψ′(t)
∣∣
x=0 = d

dt

(
t2

2 ‖η‖
2 + t〈x− x0, η〉

)∣∣∣∣∣
t=0

= t‖η‖2 + 〈x− x0, η〉|t=0

= 〈x− x0, η〉

This implies x− x0 ⊥ E and x = (x− x0) + x.

§2.3 Finite vs. Infinite Dimensions
Take X to be a linear space (vector space).

Definition 2.22 (Equivalent Norms) — Two norms are equivalent, ‖ · ‖1, ‖ · ‖2, if
∃C ∈ [1,∞) s.t. C−1‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1.

Proposition 2.23 If dimX <∞ (i.e X ∼= Rn), any two norms on X are equivalent.

Proof. (sketch) Write x = ∑n
j=1 xjej , as some basis. Assume WLOG ∑

j=1 n|xj | = 1.
The claim is: ∀x ∈ X,

c ≤ ‖x‖∑n
j=1 |xj |

≤ C

9
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One can obtain this C by bounding ‖x‖ with the maximum of finitely many terms by
the triangle inequality.

Remark 2.24 Note that proposition 2.23 fails if dimX =∞.

Example 2.25 X = C([0, 1]) with L1-norm and L∞-norm. Consider fn = tn,
t ∈ [0, 1].

‖fn‖∞ = 1, ‖fn‖1 =
∫ 1

0
|fn(t)| dt = 1

n+ 1 → 0.

Proposition 2.26 If (X, ‖ · ‖) is a normed space, consider a subspace Y ⊂ X with
dimY <∞. Then, (Y, ‖ · ‖) is complete. (here Y takes the induced norm)

Remark 2.27 1. If dimX <∞, then choose Y = X.

2. The above proposition fails if dimY = ∞, e.g. take C([0, 2]) = Y ⊂ X =
L1([0, 2]). Then take fn(t) = tn when t ∈ [0, 1], and fn(t) = 1 when t ∈ [1, 2].
Then (fn) ⊂ Y ⊂ X, fn → f = 1[1,2] ∈ X, but clearly f /∈ Y .

Corollary 2.28 For (X, ‖ · ‖) normed space, Y ⊂ X subspace with dimY < ∞.
Then Y ⊂ X is closed.

Proof. Let (xn) ⊂ Y be convergent, i.e. ∃x ∈ X, ‖xn − x‖ → 0. Need to show: x ∈ Y .

(xn) is Cauchy (‖xn − xm‖ ≤ ‖xn − x‖+ ‖xm − x‖). By proposition 2.26, ‖xn − y‖ → 0
for y ∈ Y , and we must have y = x by uniqueness of limit.

§2.4 Compactness
Unlike in finite dimensions, in infinite dimensions, the idea of compactness as we know
it with open covers is not easily as well defined. Hence, in this course we adopt the
equivalent notion of sequential compactness instead as the definition.

Definition 2.29 (Compact) — For a metric space (X, ρ), a set K ⊂ X is (sequen-
tially) compact if every sequence (xn) ⊂ K has a ρ-convergent subsequence with
its limit in K.

In finite dimensions, one may remember the well-known Heine-Borel theorem, which
states that K compact ⇐⇒ K closed and bounded.

In infinite dimensions, this is not completely true however. The forward implication, K
compact =⇒ K closed and bounded, still remains true when dimX =∞.

However, the reverse implication fails if dimX = ∞. For example take K = {en =
(0, 0, . . . , 1, 0, . . . } ∈ `1 (with the 1 in the n-th position). Then, ‖en‖ = 1 =⇒

10
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bounded, and use ‖en − em‖ = 21n 6=m to show K closed. So any convergent sequence
in K is an eventually zero sequence. But, if (xn) := en then (xn) has no convergent
subsequence.

Example 2.30 As another example of “closed and bounded =⇒ compact” failing
in infinite dimensions, take (C([0, 1]), ‖ · ‖∞), B1 = {f ∈ C : ‖f‖∞ ≤ 1}. Then B1
is closed, bounded - but not compact.

Consider fn(t) = sin (2mπt) for t ∈ [0, 1] (it helps to draw out f1 and f2). Then,
‖fn − fm‖∞ ≥ 1 ∀n 6= m =⇒ (fn) has no convergent subsequence.

N/B: the closed unit ball is never compact in infinite dimensions.

Theorem 2.31 Let (X, ‖ · ‖) be a normed space. Then the following are equivalent,

1. dimX <∞ (finite dimensional).

2. B1 = {x ∈ X : ‖f‖ ≤ 1} is compact.

For 1) =⇒ 2), this is just Heine-Borel. For 2) =⇒ 1), this uses the following lemma
2.32.

Lemma 2.32 (Riesz’s Lemma) For (X, ‖·‖) a normed space, Y ⊂ X closed subspace
with Y 6= X. Then for all ε ∈ (0, 1), ∃x ∈ X\Y s.t.

a) ‖x‖ = 1

b) d(x, Y ) := infy∈Y {‖x− y‖} > 1− ε (so it can be made arbitrarily close to 1).

Proof. (of theorem 2.31) We shall use lemma 2.32 to prove theorem 2.31, however the
proof of the lemma itself is given after this proof for the theorem. We can use the lemma
to show the case 2) =⇒ 1) by considering the contrapositive, i.e. not 1) =⇒ not 2).
So assume dimX =∞.

We claim: ∃(xn) ⊂ B1 s.t. ‖xn − xm‖ ≥ 1
2 ∀n 6= m (which implies that B1 is not

sequentially compact).

Let (yn) be a sequence of linearly independent vectors (if we couldn’t have this for some
n, then dimX would be finite).

Yn = span{y1, . . . , yn} ⊂ X is closed. Pick x1 = y1
‖y1‖(∈ B1). For n ≥ 2, suppose

x1, . . . , xn−1 are given.

Apply lemma 2.32 with X = Yn, Y = Yn−1, ε = 1
2 .

Clearly, (xn) ⊂ B1, and we have from the lemma ∀m > n,

‖xm − xn‖ ≥ d(xm, Yn) ≥ d(xm, Ym − 1)︸ ︷︷ ︸
since Yn⊂Ym−1

>
1
2

11



Krish Nigam (March, 2024) 2 Linear Spaces

Proof. (of lemma 2.32) Pick x∗ ∈ X\Y . Since Y is closed, d(x∗, Y ) > 0. This is an
infimum, so we can find y∗ ∈ Y s.t. d(x∗, Y ) ≤ ‖x∗ − y∗‖ < d(x∗,Y )

1−ε .

Set x = x∗−y∗
‖x∗−y∗‖ . Now, a) is clear and for b), we have ∀y ∈ Y ,

‖x− y‖ =

∥∥∥∥∥∥∥∥∥
x∗ −

∈Y︷ ︸︸ ︷
y∗ − ‖x∗ − y∗‖y
‖x∗ − y∗‖

∥∥∥∥∥∥∥∥∥ ≥
d(x∗, Y )
‖x∗ − y∗‖

> 1− ε

Example 2.33 (Application of lemma 2.32) If dimX <∞, and X = R3, Y ∼= R2, so
there is a vector which has distance 1 from the plane Y .

N/B: we can take ε = 0 in lemma 2.32 iff X is ‘reflexive’, which we shall see later in the
course.

12



Krish Nigam (March, 2024) 3 Linear Operators

§3 Linear Operators
In this section, we take (X, ‖ · ‖X), (Y, ‖ · ‖Y ) to be normed spaces, and A : X → Y is
linear.

Definition 3.1 (Bounded) — A : (X, ‖·‖X)→ (Y, ‖·‖Y ) is bounded if ∃C ∈ (0,∞)
s.t. ‖Ax‖Y ≤ C‖x‖X ∀x ∈ X.

If A is bounded, then ‖A‖ := sup‖x‖≤1 ‖Ax‖Y is the best possible ‘C’, and ‖A‖ is called
the operator norm (which is a norm on L(X,Y ) - this is defined later on in this section).

Note that in the sense of linear operators, boundedness is the same as continuity (bound-
edness ⇐⇒ continuity), as demonstrated in the following theorem.

Theorem 3.2 The following are equivalent,

i) A is continuous in x0 ∈ X.

ii) A is continuous in every x ∈ X.

iii) A is Lipschitz continuous (∃L : ‖Ax−Ay‖Y ≤ L‖x− y‖X∀x, y ∈ X).

iv) A is bounded.

Proof. iv) =⇒ iii) by linearity of A, ∀x1 6= x2 ∈ X,

‖Ax1 −Ax2‖Y = ‖A(x1 − x2)‖y = ‖x1 − x2‖X
(
‖A
(
x1 − x2
‖x1 − x2‖

)
‖Y
)

≤ ‖A‖ · ‖x1 − x2‖x so take L = ‖A‖.

Further, iii) =⇒ ii) =⇒ i) is clear. Now, there’s just left to show i) =⇒ iv).

Assume ‖A‖ = ∞, so we can find (xn) ⊂ X with ‖xn‖ ≤ 1, and 0 < ‖Axn‖Y → ∞ as
n→∞.

Set zn := xn
‖Axn‖Y

, then ‖zn‖X → 0 as n→∞, but

‖A(x0 + zn)−Ax0‖Y = ‖Azn‖Y = 1 6→ 0 as n→∞

Corollary 3.3 If dimX <∞, with A : X → Y linear. Then A is continuous

Proof. ‖x‖∗ := ‖x‖X + ‖Ax‖Y defines a norm on X. By proposition 2.23, ∃C > 0 s.t.
‖x‖∗ ≤ C‖x‖X ∀x ∈ X. But since ‖Ax‖Y ≤ ‖x‖X , A is bounded, hence continuous by
theorem 3.2.

13
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Example 3.4 Take X = Y = C([0, 1]) with ‖ ·‖X = ‖ ·‖1, ‖ ·‖y = ‖ ·‖∞ and A = id.
Then A is not continuous; we can show that it is not bounded. Take,

fn(t) =
{

2n2t 0 ≤ t ≤ 1
2n

2n− 2n2t 1
2n < t ≤ 1

n

Essentially, this looks like a ‘tent function’, which attains value of n at its peak, for
t ∈ [0, 1

n ] and 0 everywhere else.

Then ‖fn‖1 = 1, fn ∈ X ∀n, but ‖A‖ ≥ supn ‖A ·fn‖Y = supn ‖fn‖∞ = supn n =∞.

In fact, unboundedness is rather common, so care is needed.

Example 3.5 A more classical example is X = C1([0, 1]), Y = C([0, 1]), A : X → Y
with “A = d

dx”. This is well-defined since if f ∈ X, Af ∈ Y .

Take ‖ · ‖Y = ‖ · ‖∞ and ‖ · ‖x = ‖ · ‖Y , then A is unbounded. Indeed, take
fn(t) = sin(nt), or even fn(t) = tn. Then it is easy to check that ‖fn‖X = 1 but
‖Afn‖Y = n→∞.

Remark 3.6 If instead one sets ‖ · ‖X = ‖ · ‖C1 = ‖f‖∞ + ‖f ′‖∞ then the above
fn’s are of no use (and in fact A is bounded!).

Now let’s define the following important space

L(X,Y ) = {A : X → Y : A linear and continuous}

L(X,Y ) is a normed vector space with the following norm:

‖A‖L(X,Y ) = ‖A‖ = sup
‖x‖X≤1

‖Ax‖Y = sup
x 6=0

‖Ax‖y
‖x‖X

and one has the following useful inequality, ∀x ∈ X, ‖Ax‖Y ≤ ‖A‖ · ‖x‖X .

Remark 3.7 By L(X,Y ), we really mean L ((X, ‖ · ‖X), (Y, ‖ · ‖Y )).

N/B: If X = Y and ‖ · ‖X = ‖ · ‖Y , one sets L(X,X) = X

Theorem 3.8 If (Y, ‖ · ‖Y ) is Banach, then so is
(
L(X,Y ), ‖ · ‖L(X,Y )

)
.

Corollary 3.9 Take A : X → Y to be continuous, and K ⊂ X compact. Then
A(K) = {Ax : x ∈ K} and A(K) ⊂ Y is compact.

Proof. Fix some (yn) ⊂ A(K), then we need to find a convergent subsequence (ynk
).

By definition of A(K), yn = Axn for some xn ∈ K, so (xn) ⊂ K has a convergent

14
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subsequence by compactness of K - call it (xnk
).

We claim: ynk
= Axnk

is convergent. Indeed let ‖xnk
− x‖X → 0 as k → ∞. By

(Lipschitz) continuity,

‖ynk
−Ax‖Y = ‖Axnk

−Ax‖Y ≤ L‖xnk
− x‖X → 0 as k →∞

so (ynk
) ⊂ Y converges and the limit is Ax.

§3.1 Duality
Take 2 normed spaces (X, ‖ · ‖X), (Y, ‖ · ‖Y ). Recall,

L(X,Y ) = {A : X → Y : A linear and bounded}

and L(X,Y ) is Banach if Y is with norm ‖A‖ = ‖A‖L(X,Y ) = sup‖x‖≤1 ‖Ax‖Y =
sup‖x‖=1 ‖Ax‖Y .

An important special case is take Y = R (which is finite dimensional so we can take any
norm on it).

Definition 3.10 (Dual Space) — The dual space of X is X∗, with X∗ = L(X,R
(the space of all bounded, linear operators from X to R).

Remark 3.11 X∗ is always Banach (as soon as X is normed, even though X may
not be Banach itself). So going to the dual space gives us completeness for free. The
elements of X∗ are called bounded, linear functionals on X.

§3.1.1 Duality in Hilbert spaces

Take an inner product space (H, 〈·, ·〉) over R. Consider the map ∀y ∈ H,

Λy : H → R , x 7→ 〈y, x〉

This is a linear map, since the inner product is linear.

Lemma 3.12 i) Λy ∈ H∗ (the dual space of H).

ii) the map Λ : H → H∗ is a linear isometry (i.e. ‖Λ(y)‖ = ‖y‖, or the input
and output have the same norm).

Proof. For i), linearity is clear since the inner product is linear. For boundedness of Λy,
∀x ∈ H, ‖x‖H ≤ 1,

|Λy(x)|︸ ︷︷ ︸
Euc. norm on R

= |〈y, x〉| ≤ ‖y‖H · ‖x‖H︸ ︷︷ ︸
Cauchy-Schwarz

≤ ‖y‖H(<∞)

For ii) Λ is linear so just need to check isometry. Check ‖Λ(y)‖ = ‖Λy‖∗ =? ‖y‖H .

We know from i) ‖Λy‖∗ ≤ ‖y‖H so take x = y
‖y‖H

in Λy to find

|Λy(y)| = ‖y‖H ( =⇒ ‖Λy‖ ≥ ‖y‖H)

15



Krish Nigam (March, 2024) 3 Linear Operators

Theorem 3.13 (Riesz’s Representation Theorem) For every l ∈ H∗, ∃! y ∈ H s.t.
l = Λy.

Notice how this theorem states that Λy produces an isomorphism between H and H∗!
For example, (`2)∗ ∼= `2.

Proof. (sketch) At the moment this is just a sketch of the proof, when I get some more
time I may come back later and fill in the explicit details.

First show uniqueness of l. Then show existence, for which one can assume WLOG
‖l‖∗ = 1 (since if l(·) ≡ 0, then choose y = 0).

Consider a sequence (yn) ⊂ H s.t. l(yn)→ 1(= ‖l‖∗), and ‖yn‖ = 1 ∀n.

Claim 1: (yn) is Cauchy.

Claim 2: l(·) = Λy(·). And then we are done.

§3.1.2 Duality of Banach Spaces

Note that ideas from Hilbert spaces in the previous few results do not follow over to
Banach spaces (but the converse is true).

Theorem 3.14 ∀p ∈ (1,∞), (`p)∗ ∼= `q, where 1
p + 1

q = 1.

For the proof, we take y = `q, define Λy : `p → R, with x 7→
∑
n≥1 xnyn. We need the

following lemma to make sure this sum doesn’t explode, and along with the fact that Λ
is surjective (which one would need to show explicitly), then one can conclude theorem
3.14.

Lemma 3.15 i) Λy ∈ (`p)∗.

ii) Λ : `q → (`p)∗, y 7→ Λy is a linear isometry.

Remark 3.16 In fact, theorem 3.14 extends to p = 1, and it is also true that for
any measure space (X,A, µ), (Lp(µ))∗ ∼= Lq(µ).

Consider the space c0 = {(xn) : limn→∞ xn = 0} ⊂ `∞, then (c0, ‖ · ‖∞) is Banach.

We claim: (c0)∗ ∼= `1.

To show this one needs to show the following:

1. Λy : c0 → R, x 7→ Λy(x) = ∑
n≥1 xnyn.

2. The map `1 → c∗0, y 7→ Λy is a linear isometry.

16



Krish Nigam (March, 2024) 3 Linear Operators

§3.2 Dual Operators
Consider normed spaces (X, ‖ · ‖X), (Y, ‖ · ‖Y ) over R. A : X → Y is bounded, linear (so
A ∈ L(X,Y )), and the duals are X∗, Y ∗.

Definition 3.17 (Dual Operator) — The dual operator of A is the linear operator
A∗ : Y ∗ → X∗ defined by

(X∗ 3) A∗y∗ := y∗0A : X → R ∀y∗ ∈ Y ∗

Notation: Often for a linear map l ∈ X∗, instead of writing l(x), we write 〈l, x〉.

Then the above definition is equivalent to: 〈A∗y∗, x〉 = 〈y∗, Ax〉 ∀x ∈ X,∀y ∈ Y ∗.

Later, we will see A∗ is in fact bounded and ‖A∗‖ = ‖A‖ (using Hahn-Banach). In
finite dimensions, A ∈ Rm×n induces a linear operator LA : Rn → Rm, LAx = Ax. If
AT ∈ Rm×n is the transpose of A, and ik : Rk →

(
Rk
)∗

is the canonical isomorphism
(by Riesz’s representation thm), then

(LA)∗ ◦ im = in ◦ LAT : Rm → (Rn)∗

=⇒ dual operators in finite dimensions are nothing but transposes.

• More generally, if H Hilbert (or R for instance), A : H → H, A : L(H) then
with I : H → H∗, the canonical isomorphism (by Riesz’s representation thm), the
operator

Ã∗ := i−1 ◦A∗ ◦ i : H → H

is called the adjoint operator of A (and one writes A∗ ≡ Ã∗).

Hence, 〈Ã∗y, x〉 = 〈y,Ax〉 ∀x, y ∈ H, where 〈·, ·〉 is the inner product on H. If A∗ = A
then 〈Ay, x〉 = 〈y,Ax〉 and A is called self-adjoint.

§3.3 Hahn-Banach and Applications
Now we will go back to the case of X simply as a linear space (vector space) over R.

Definition 3.18 (Sublinear Map) — The map p : X → R is called sublinear if

i) p(αx) = αp(x) , ∀α ≥ 0, x ∈ X.

ii) p(x+ y) ≤ p(x) + p(y) , ∀x, y ∈ X.

Notice that linear =⇒ sublinear. In the definition the map p could be p ∈ X∗, or
p(x) := any norm on X.

Theorem 3.19 (Hahn-Banach) Let M ⊂ X be a linear subspace. Let p : X → R
be sublinear, f : M → R be linear, with

f(x) ≤ p(x) ∀x ∈M

Then, there exists a linear map F : X → R with F |H = f and F (x) ≤ p(x) ∀x ∈ X.
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Remark 3.20 (Geometrical Intuition) Take X = Rn, 0 ∈ M ⊂ X open, convex
and fix a x1 /∈M . Then I can find a linear map f : X → R s.t. f is “separating x1
from M”.

i.e.
{
f(x) < a ∀x ∈M
f(x1) ≥ a for some a 6= 0

We can normalise so WLOG take a = 1. We introduce p(x) := inf{r > 0 : xr ∈M}
(e.g. if M = {x ∈ X : ‖x‖ ≤ 1} in a normed space (X, ‖ · ‖), then p(x) = ‖x‖).

We can check that p is sublinear (by convexity) and p(x) < 1 ⇐⇒ x ∈M . To show
this, if p(x) < 1 then ∃ε > 0 s.t. x

1−ε ∈M so

x = (1− ε) x

1− ε︸ ︷︷ ︸
∈M

+ ε · 0︸︷︷︸
∈M

∈M by convexity

For the reverse direction, x ∈M =⇒ x
1−ε ∈M for some ε > 0 by openness of M .

This implies p(x) ≤ 1− ε < 1.

N/B: to find f with the desired separation property, we need to ensure: f(x1) = 1
and f(x) ≤ p(x) ∀x ∈ X.

We omit the proof of Hahn-Banach (H-B) from this document (for one, it is rather long
to write up), although there are plenty of proofs of it which can be found online.

There is an analogous complex version of H-B for X over C, p : X → R is called C-
sublinear if i) p(αx) = |α|p(x) ∀x ∈ X, α ∈ C and ii) holds. But in this course we focus
on spaces X over R

§3.3.1 Applications of Hahn-Banach

We take X to be a normed space (X, ‖ · ‖). We present some further results which come
as a consequence of H-B, although we do not give proofs for all of the results.

Corollary 3.21 (Extending Linear Functionals) Let M ⊂ X be a linear space (which
inherits ‖ · ‖ from X), f ∈M∗. Then ∃F ∈ X∗ s.t. F |m = f and ‖F‖X∗ = ‖f‖M∗ .

Proof. Define p : X → R via: p(x) = ‖x‖X · ‖f‖M∗ (this is sublinear) and ∀x ∈ M ,
f(x) ≤ |f(x) = ‖x‖X · |f(x)|

‖x‖X
≤ ‖x‖X · ‖f‖M∗ = p(x). Then apply H-B.

For x∗ ∈ X∗, recall the notation x∗(x) = 〈x∗, x〉, x ∈ X.

Theorem 3.22 ∀x ∈ X, ∃x∗ ∈ X∗ s.t. 〈x∗, x〉 = ‖x‖2X = ‖x∗‖2X∗ .

Proof. Let M := span{x}. Define f(tx) = t‖x‖2X ∀t ∈ R, then f : M → R is linear and
‖f‖M∗ = sup‖tx‖X≤1 |f(tx)| = ‖x‖X , so f ∈M∗.
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Apply corollary 3.21 to extend f to x∗ := F ∈ X∗, with

‖x∗‖X∗ = ‖f‖M∗ = ‖x‖X and 〈x∗, x〉 = f(x)︸ ︷︷ ︸
x∗|M =f

= ‖x‖2X

Remark 3.23 This gives the dual characterisation of the norm, which we shall see
later.

We can use H-B to ‘separate’ all sorts of things! For instance, separating points using
dual elements as the following proposition demonstrates.

Proposition 3.24 ∀x, y ∈ X with x 6= y, ∃l ∈ X∗ s.t. l(x) 6= l(y).

Proof. Choose a l ∈ X∗ according to theorem 3.22 with y − x in place of x. Then,
l(x− y) = l(x)− l(y) = ‖y − x‖2X > 0.

Further, we can separate points from closed subspaces, as in the following theorem.

Theorem 3.25 Let M ⊂ X be a linear, closed space, and assume x0 /∈M s.t.

d = dist(x0,M) := inf
x∈M
‖x0 − x‖M > 0

Then ∃l ∈ X∗ with l|M = 0 and ‖l‖X∗ = 1, l(x0) = d.

This theorem has a lot of mileage. For instance, you get,

• If we apply theorem 3.25 with M = {0}, x0 = x
‖x‖X

, we recover theorem 3.22 with
x∗ := ‖x‖X l.

• We can use theorem 3.25 to prove the following new theorem.

Theorem 3.26 If X∗ is separable, then X is separable.

In particular, this shows (`∞)∗ 6∼= `1, since `1 is separable but `∞ is not separable.

From theorem 3.22, we can obtain a dual characterisation of the norm, as given in
the following corollary.

Corollary 3.27 i) ∀x ∈ X, ‖x‖X = sup‖x∗‖X∗≤1 |〈x∗, x〉| (= supx∗∈X∗ |〈x∗, x〉|)

ii) ∀x∗ ∈ X∗, ‖x∗‖X∗ = sup‖x‖X≤1 |〈x∗, x〉| (= supx∈X |〈x∗, x〉|)

N/B: the sup in i) is always achieved.
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Proof. For x = 0, the RHS of i) is = 0, so let x 6= 0. Consider “≥”, by homogeneity, we
can assume ‖x‖X = 1 if x∗ ∈ X∗ s.t. ‖x∗‖X∗ ≤ 1, then

|〈x∗, x〉| ≤ ‖x∗‖X∗‖x‖X ≤ ‖x‖X

Now consider “≤”. By theorem 3.22, ∃x∗ ∈ X∗ s.t. |〈x∗, x〉| = 1 = ‖x‖X , and so the sup
is achieved.

Item ii) is just the consequence of the definition of ‖ · ‖X∗ .

Theorem 3.28 Let X,Y be normed and A ∈ L(X,Y ). The dual operator A∗ :
Y ∗ → X∗ is bounded and ‖A∗‖L∗(Y ∗,X∗) = ‖A‖L(X,Y ).

Proof.

‖A∗‖ =
defn of ‖·‖︷ ︸︸ ︷

sup
‖y∗‖Y ∗=1

‖A∗y∗‖X∗ =
defn of ‖·‖X∗︷ ︸︸ ︷

sup
‖y∗‖Y ∗=1

sup
‖x‖X=1

|〈A∗y∗, x〉|

= sup
‖x‖X=1

sup
‖y∗‖Y ∗=1

|〈y∗, Ax〉|︸ ︷︷ ︸
defn of A∗

= sup
‖x‖X=1

‖Ax‖Y = ‖A‖
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§4 Baire Category and UBP
§4.1 Baire Category
The motivation for Baire category arises from Baire’s original question:

Let fn : [0, 1]→ R, n ≥ 1 be continuous ∀n. Assume f(x) := limn→∞ fn(x) exists
∀x ∈ [0, 1]. Then, does f have at least one point of continuity?

What we seek here, in this section, is a topological characterisation of the ‘size’ of sets.

Recall for a metric space (X, d) with A ⊂ X, the following definitions of the interior and
closure of A.

Definition 4.1 (Interior of A) — We can define the interior of A ⊂ X as follows

int(A) =
⋃

G⊂A, G open
G

Definition 4.2 (Closure of A) — We can define the closure of A ⊂ X as follows

A =
⋂

U⊃A, U closed
U

Lemma 4.3 If (X, d) is a complete metric space, X 6= ∅, and if you can write
X = ⋃∞

k=1Ak with Ak closed (i.e. Ak = Ak) then ∃k s.t. int(Ak) 6= ∅.

Proof. Assume for contradiction, not true, then X = ⋃∞
k=1Ak with Ak closed and

int(Ak) = ∅ ∀k ≥ 1.

Pick x1 ∈ X\A1. Since X\A1 = X ∪ AC is open, then one can find 0 < r1 < ”−1 s.t.
B(x1, r1) ⊂ X\A1.

Repeat to find x2 ∈ B(x1,
r1
2 )\A2 and 0 < rk < 2−2 s.t. B(x2, r2) ⊂ X\A2.

We claim: ∀k ≥ 1, ∃xk ∈ X\Ak and 0 < rk < 2−k s.t. (by induction over k)

B (xk+1, rk+1) ⊂ B
(
xk,

rk
2

)
⊂ B(xk, rk) ⊂ X\Ak

The sequence (xk) is Cauchy (since d(xm, xk) ≤ rk
2 < 2−(k+1) ∀m ≥ k ≥ 1). By

completeness, ∃x∗ ∈ X, d(x, x∗) → 0 if true then, x∗ ∈ X\
⋃∞
k=1Ak = ∅, which is a

contradiction.

Definition 4.4 (Meager and Fat Sets) — For a metric space (X, d)

i) A ⊂ X is called meager (or of 1st Baire category, i.e. cat(A) = 1) if you
can write A = ⋃∞

k=1Ak with nowhere dense sets Ak. (Ak is nowhere dense if
int(Ak) = ∅)

ii) A ⊂ X is called fat (or of 2nd Baire category, i.e. cat(A) = 2) if it is not
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meager.

We can rewrite lemma 4.3 with the above language, which becomes the following Baire
category theorem.

Theorem 4.5 (Baire Category) Let (X, d) be a complete metric space, X 6= ∅, then
cat(X) = 2.

Remark 4.6 Baire category (BC) shows the existence of fat sets (e.g. R,C, . . . etc.).
Here are some useful properties of BC.

• Note that Q ⊂ R is meager.

• If A is meager and A′ ⊂ A, then A′ is meager.

• ‘Meager-ness’ is closed under countable unions, so if Ak meager, then ⋃∞k=1Ak
is meager.

What about the set R\Q? You can show this is fat with the following corollary of
BC.

Corollary 4.7 Let (X, d) be complete, X 6= ∅, and if A ⊂ X with cat(A) = 1, then
cat(X\A) = 2 and X\A is dense.

The proof of this arises from the fact that U ⊂ X open, dense ⇐⇒ A = X\U closed,
nowhere dense.

Corollary 4.8 If ∅ 6= U ⊂ X is open, then cat(U) = 2.

Proof. If cat(U) = 1, then this implies X\U is dense, so we can write X = X\U = X\U ,
i.e. U = ∅, which is a contradiction.

What about topological vs measure-theoretic notions of size? Take X = R and λ the
Lebesgue measure, then does λ(A) = 0 =⇒ A meager? Or, does A ⊂ R meager
=⇒ λ(A) = 0? The answer is no and no!

Example 4.9 Take Q = {q1, q2, . . . } and define Uj = ⋃
k≥1

(
qk − 1

2j+k+1 , qk + 1
2j+k+1

)
,

then λ (Uj) ≤
∑
k≥1 2 · 1

2j+k+1 = 2−j .

Uj is open and Uj ⊃ Q = R so Uj = R, i.e. Uj is dense. Then by corollary 4.7
A := X\Uj is nowhere dense and so A := ⋃

j≥1Aj is meager.

Hence, X\A = ⋂
j≥1 Uj is fat and λ(U) = limn→∞ λ(Uj) = 0 =⇒ λ(A) =∞.

§4.2 Uniform Boundedness Principle
Baire’s category theorem leads to the uniform boundedness principle.
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Theorem 4.10 Let (X, d) be complete and (fλ)λ∈Λ be a family of continuous
functions fλ : X → R. If (fλ) is bounded pointwise, i.e. (note that the bound below
can depend on x)

sup
λ∈Λ
|fλ(x)| <∞ ∀x ∈ X

then ∃B ⊂ X open ball s.t. supλ∈Λ,x∈B |fλ(x)| <∞ (this is uniform in x ∈ B), i.e.
(fλ) is uniformly bounded on B.

Remark 4.11 (fλ) need not be linear.

Proof. For k ≥ 1, consider the closed set Ak = {x ∈ X : ∀λ ∈ Λ : |fλ(x)| ≤ k} =⋂
λ∈Λ{|fλ| ≤ k} (which is closed as fλ continuous).

Clearly ⋃∞k=1Ak = X and since X is complete, by lemma 4.3 ∃k0 s.t. int (Ak0) 6= ∅. Then
we can pick B ⊂ Ak0 .

Incorporating the linear structure, we can get the following useful result known as the
Uniform Boundedness Principle (which is also called Banach-Steinhaus theorem).

Corollary 4.12 (Banach-Steinhaus) If X, Y are normed spaces, and X is complete
with (Aλ)λ∈Λ ⊂ L(X,Y ). If (Aλ)λ∈Λ are bounded pointwise, i.e.

sup
λ∈Λ
‖Aλx‖Y <∞ ∀x ∈ X

then (Aλ) is bounded uniformly, i.e. supλ∈Λ ‖Aλ‖L(X,Y ) <∞.

Proof. For λ ∈ Λ, we define the continuous map fλ : X → R by fλ(x) = ‖Aλx‖Y . By as-
sumption onAλ, theorem 4.10 applies and yieldsB = Br(x0) ⊂ X s.t. supλ∈Λ,x∈B |fλ(x)| <
∞. This gives for all ‖x‖X < 1 and λ ∈ Λ:

‖Aλx‖Y = 1
r
‖Aλ (x0 + rx)−Aλ (x0) ‖Y ≤

1
r
‖Aλ (x0 + rx) ‖Y + 1

r
‖Aλ(x0)‖Y ≤M

and so ‖Aλ‖L(X,Y ) ≤M .

§4.2.1 Applications of UBP

Theorem 4.13 Let X, Y be normed spaces and let X be complete. let Ak ∈ L(x, Y )
and let (Ak) converge pointwise to A : X → Y , (i.e ∀x ∈ X, ‖Akx−Ax‖Y → 0 as
k →∞).

Then A is linear and continuous, i.e. A ∈ L(X,Y ), and

‖A‖L(X,Y ) ≤ lim
k→∞

inf
k
‖Ak‖L(X,Y ) <∞

Proof. (Akx) ⊂ Y is convergent and hence bounded, so corollary 4.12 (BS) applies and
yields supk ‖Ak‖L(X,Y ) <∞; this shows limk→∞ infk ‖Ak‖L(X,Y ) <∞.
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Pick a subsequence k; s.t. ‖Akj
→j→∞ limk→∞ infk ‖Ak‖ := M . (Akj

) converges
pointwise, and we can check that A is linear and

∀x ∈ X, ‖Ax‖Y = lim
j→∞

‖Akj
x‖Y ≤ lim

j→∞
‖Akj

‖‖x‖X ≤M‖x‖X

Remark 4.14 The completeness of X is important for Banach-Steinhaus 4.12 (as
for Baire).

Example 4.15 Take X = C0([0, 1]) with ‖ · ‖X = ‖ · ‖1 the L1-norm,
∫ 1

0 |f(x)|dx,
and let

Akf = k

∫ 1

1− 1
k

f(t) dt, k ≥ 1.

Clearly, |Akf | ≤ k · ‖f‖1 so Ak : X → R is continuous with ‖Ak‖L(X,R) ≤ k ∀k.

Moreover, ∀f ∈ X, Akf →k→∞ Af := f(1). But A : X → R is not continuous, e.g.
take fn(t) = tn, which fn →L1 0 but

Afn = fn(1) = 1 6→ 0(= A0) as n→∞

Of course, (C([0, 1]), ‖ · ‖1) is not complete, so this is not a contradiction.

N/B: if we instead took (C([0, 1]), ‖ · ‖∞) then |Akf | ≤ ‖f‖∞ and Af = f(1) is continuous
because it is bounded by ‖A‖L(X,R ≤ 1 as ‖Af‖∞ ≤ ‖f‖∞.

§4.2.2 Baire’s Original Problem

We can go back to Baire’s original question from the beginning of this section, which is
as follows: for fn : [0, 1]→ R continuous ∀n ≥ 1 and pointwise convergent (i.e. f(x) =
limn→∞ fn(x) exists ∀x ∈ [0, 1]). Then, does f have point(s) of continuity?

Theorem 4.16 (Baire) Let (X, d) be complete and (fn) be a sequence of continuous
functions fn : X → R, and for each x ∈ X the pointwise limit

lim
n→∞

fn(x) := f(x) ∈ R

exists. Then the set

R := {x ∈ R : f is continuous at x}

is dense.

Proof. (sketch) For ε > 0, n ≥ 1 set Pn,ε = {x ∈ R : |fn(x) − f(x)| ≤ ε}; Rε =⋃∞
n=1 int (Pn,ε) (⊂ Rε′ ∀ε ≤ ε′).

Claim 1: ⋂∞n=1R 1
n

= R.

Claim 2: Rε is open and dense ∀ε > 0.
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Remark 4.17 As a corollary, 1Q is nowhere continuous ; hence @fn : R → R
continuous with fn → 1Q pointwise.

§4.3 Open Mapping Theorem
In this section we take X,Y to be normed spaces and A : X → Y to be a linear operator.
Recall the definition of an open ball in X

BX(x, r) = {y ∈ X : ‖y − x‖X < r}, x ∈ X, r > 0,

Notation: We have sets A,B ⊂ X linear over K, λ ∈ K; A+B = {a+ b : a ∈ A, b ∈ B},
λA = {λa : a ∈ A}.

Definition 4.18 (Open Mapping) — A is open if A(U) = {Ax : x ∈ U} (⊂ Y ) is
open ∀U (⊂ X) open.

Remark 4.19 1. A continuous means A−1(V ) (⊂ X) is open ∀V (⊂ Y ) open.

2. A continuous need not be open e.g. Ax := 0 ∈ Y .

Theorem 4.20 (Open Mapping Theorem) Let X, Y be Banach spaces, and A ∈
L(X,Y ). Then:

i) if A is surjective, A is open.

ii) if A is bijective, then A−1 ∈ L(Y,X). (inverse operator theorem)

Remark 4.21 Statement ii) is important in applications. If A ∈ L(X,Y ) is
bijective, then A−1 : Y → X is linear and A−1 is also bounded (or equivalently
continuous).

The proof for open mapping theorem is not given here but it can be easily found online;
it makes use of Baire category and the completeness of X and Y . I intend to add in the
details of the proof in the future though when I get some more time for it.

Example 4.22 Let X = Y with norms ‖ · ‖1 and ‖ · ‖2 and assume ∃C > 0 s.t.

‖x‖2 ≤ C‖x‖1 ∀x ∈ X

If X is complete w.r.t both ‖·‖1 and ‖·‖2, then A = id: (X, ‖·‖1)→ (X, ‖·‖2) is open
by the open mapping theorem (indeed this applies since A is bounded by the above:
‖x‖2 ≤ C‖x‖1). Since A is bijective, ii) gives that A−1 = id : (X, ‖ · ‖2)→ (X, ‖ · ‖1)
is bounded, i.e.

∃C : ‖A−1x‖1 = ‖x‖1 ≤ C‖x‖2
so ‖ · ‖1 and ‖ · ‖2 are actually equivalent.
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Example 4.23 Consider X = C0([0, 1]) with ‖ · ‖1 = ‖ · ‖∞, ‖ · ‖2 = ‖ · ‖L1 . Then,
A = id: (X, ‖ · ‖1)→ (X, ‖ · ‖2) is continuous, since

‖Af‖2 = ‖f‖2 =
∫ 1

0
|f(t) dt ≤ ‖f‖∞ = ‖f‖1

but A is not open. Otherwise by example 4.22 ‖ · ‖1 and ‖ · ‖2 would be equivalent.
If we take fn(t) to be the tent map which peaks at n for t ∈ [0, 1

n ] (and 0 everywhere
else), then ‖fn‖2 = 1, ‖fn‖1 = n→∞. This shows Y in theorem 4.20 needs to be
complete.

Example 4.24 This example shows that completeness of X is also a requirement.
Take

X = Y = {(xn) ∈ `∞ : ∃N : xn = 0 ∀n ≥ N} ⊂ `∞

with ‖ · ‖X = ‖ · ‖Y = ‖ · ‖∞. This is a linear normed space. Although it is not
complete. Define

A : X → X, Ax =
(
x1,

x2
2 ,

x3
3, . . .

)
if x = (x1, x2, . . . )

Then A is linear and bijective with A−1 : X → X, A−1x = (x1, 2x2, 3x3, . . . ) and A
is bounded:

‖Ax‖∞ = sup
n≥1

|xn|
n
≤ sup

n≥1
|xn| = ‖x‖∞

so ‖A‖ ≤ 1. but A−1 is unbounded. Pick x(n) = (
n︷ ︸︸ ︷

1, . . . , 1, 0, . . . ) then ‖x(n)‖∞ = 1
but ‖A−1x(n)‖ = n.

Hence, A−1 /∈ L(X) and X cannot be complete, otherwise by ii) in theorem 4.20
A−1 would be bounded.

§4.4 Closed Graph Theorem
Again, we take X, Y to be normed, linear spaces. Often, the operator A is not defined
on all of A but instead on a ‘domain’ D(A). So we assume that:

• D(A) ⊂ X is a linear subspace, on which the linear operator A : D(A) (⊂ X) → Y
is defined.

Definition 4.25 (Graph) — The graph of A (really of (A,D(A))) is the linear space

ΓA = {(x,Ax) : x ∈ D(A)} ⊂ X × Y

We endow X × Y with the norm ‖(x, y‖X×Y = ‖x‖x + ‖y‖Y , x ∈ X, y ∈ Y (note this
norm preserves the product topology).

Definition 4.26 (Closed Mapping) — A is called closed if ΓA is closed in (X × Y, ‖ · ‖X×Y ).
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Proposition 4.27 Let A ∈ L(X,Y ) with D(A) = X. Then A is closed.

Proof. Let (xk, yk) ⊂ ΓA with ‖(xk, yk)− (x, y)‖X×Y →k→∞ 0 for some (x, y) ∈ X × Y .
We need to show: (x, y) ∈ ΓA, i.e. y = Ax.

We know yk = Axk and ‖xk − x‖X → 0, ‖Axk − y‖ → 0. But ∀k ≥ 1

‖y −Ax‖Y ≤ ‖y −Axk‖Y︸ ︷︷ ︸
→0

+ ‖Axk −Ax‖Y︸ ︷︷ ︸
≤‖A‖‖xk−x‖X→0

Theorem 4.28 (Closed Graph Theorem) Let X, Y be Banach spaces and A : X → Y
be linear. Then, the following are equivalent

i) A ∈ L(X,Y )

ii) A is closed

Proof. For i) =⇒ ii), see proposition 4.27. So we need to show ii) =⇒ i). If X, Y are
complete, then so is (X × Y, ‖ · ‖X×Y ).

A closed means ΓA is closed in (X × Y, ‖ · ‖X×Y ), and so (ΓA, ‖ · ‖X×Y ) is Banach.
Consider

πX : ΓA → X πY : ΓA → Y

(x,Ax) 7→ x (x,Ax) 7→ Ax

πX , πY are continuous (with ‖πX‖, ‖πY ‖ ≤ 1). πX is injective, and surjective, so by ii)
in the open mapping theorem 4.20, π−1

X ∈ L (X,ΓA) and so

A = πY ◦ π−1
X ∈ L(X,Y )

Remark 4.29 Notice how statement ii) is simpler than statement i), but they are
in fact equivalent. We can unpack statements i) and ii) from 4.28 a little further as
follows.

i) says that A is continuous, i.e if (xn) ⊂ X, x ∈ X, ‖xn − x‖X → 0 =⇒
‖Axn−Ax‖Y → 0, so there are two things to check: (Axn) converges and the
limit is in Ax.

ii) says that A is closed, i.e. both ‖xn − x‖X → 0 and ‖Axn − y‖Y → 0 implies
that Ax = y, so conversely here there is only one condition to check.

A running example to have in mind for this section is Y = X = C0([0, 1]) with
‖ · ‖X = ‖ · ‖∞ and A = d

dt , with D(A) =e.g. C1([0, 1]) ⊂ X.
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Then, (D(A), ‖ · ‖∞) is not Banach and A : D(A)→ C0([0, 1]) is therefore an example
of an operator which is closed, but not continuous (see theorem 4.28).

For non-continuous, take fn(t) = tn ∈ D(A), Afn = nfn−1 so ‖fn‖∞ = 1, ‖Afn‖∞ =
n‖fn−1‖∞ = n, so

sup
f∈D(A),‖f‖∞≤1

‖Af‖∞ =∞

For closed, if (fn, f ′n)→ (f, g) (in D(A)×C0([0, 1])) then ‖fn−f‖∞ → 0, ‖f ′n−g‖∞ → 0,
but

∀t ∈ (0, 1],
→f(t)︷ ︸︸ ︷
fn(t) =

∫ t

0
f ′n(t̃) dt̃︸ ︷︷ ︸

→
∫ t

0 g(t̃) dt̃

+
→f(0)︷ ︸︸ ︷
fn(0)

by dominated convergence theorem. So, f ′ = g by fundamental theorem of calculus, i.e.
(f, g) = (f, f ′) ∈ ΓA.

Using closed graph theorem, we can now replace continuity by closedness in ii) of open
mapping theorem.

§4.4.1 Closable Operators

Let X, Y be normed and A : D(A) ⊂ X → Y be a linear operator. This leads to the
well-defined notion of a graph on A, ΓA.

Definition 4.30 (Extension of Linear Operator) — The map B : D(B) ⊂ X → Y is
called an extension of A if D(B) ⊃ D(A) and B|D(A) = A.

Definition 4.31 (Closable) — A is called closable if it has an extension B with
graph ΓB = ΓA. We write B = A (the closure of A).

N/B: the closure of A is itself a closed operator.

Lemma 4.32 The following are equivalent

i) A is closable.

ii) ∀(xk, Axk) ⊂ ΓA with xk → 0, Axk → y, one has y = 0.
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§5 Spectral Theory
In general, spectral theory is an extension of the theory of certain matrices being
diagonalisable to a much broader class of linear operators in a variety of mathematical
spaces being ‘diagonalisable’. More on this later in this section.

§5.1 Weak vs. Strong Topologies
Take (X‖ · ‖X) be a normed space, and consider the dual X∗ over R.

Definition 5.1 (Weak Convergence) — A sequence (xn) ⊂ X converges weakly
to x ∈ X, if ∀l ∈ X∗

lim
n→∞

l(xn) = l(x)

We write xn →w x.

Definition 5.2 (Strong Convergence) — A sequence (xn) ⊂ X converges strongly
(or in norm) to x if

lim
n→∞

‖xn − x‖ = 0

We write xn → x.

Remark 5.3 xn → x implies xn →w x, since |l(xn)− l(x)| ≤ ‖l‖∗‖xn − x‖.

However, the converse is false. Let xn = (0, . . . , 0,
nth︷︸︸︷
1 , 0, . . . ) ∈ `2, ‖xn− xm‖ =

√
2

(n 6= m). So, xn does not converge (strongly) but xn →w 0.

By Riesz’s representation theorem, l(·) = 〈y, ·〉`2 for some y ∈ `2. Hence, with
y = (yn)n

l(xn) = 〈y, xn〉 = yn ≤
√∑
k≥n
|yk|2 → 0 (since ‖y‖2 <∞)

The above follows from the fact that (yn) ∈ `p implies yn → 0.

Proposition 5.4 If xn →w x and xn →w y, then x = y.

Proof. Assume not. By proposition 3.24, ∃l ∈ X∗ with l(x) 6= l(y) if x 6= y. With this l,

l(x) =xn→wx lim
n→∞

l(xn) =xn→wy l(y)

which is a contradiction.

Proposition 5.5 If xn →w x, then supn ‖xn‖X <∞.

Proof. Consider An ∈ L(X∗,R) (=X∗∗: bidual) with An(l) := l(xn), l ∈ X∗.
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xn →w x implies supn |An(l)| <∞ ∀l ∈ X∗ and X∗ is complete so by Banach-Steinhaus
4.12, supn ‖An‖L(X∗,R) <∞.

But ‖An‖L(X∗,R) = supl∈X∗:‖l‖≤1 |l(xn)| = ‖xn‖X , by the dual characterisation of the
norm in corollary 3.22.

This naturally leads to the following definition.

Definition 5.6 (Bidual) — X∗∗ := (X∗)∗ (= L(X∗,R)) is called the bidual of X.

X embeds canonically into X∗∗ via the embedding

i : X → X∗∗, i(x)(x∗) := x∗(x) = 〈x∗, x〉 ∀x ∈ X∀x∗ ∈ X∗

Here, i : X → X∗∗ assigns each x ∈ X the linear functional i ∈ X∗∗, whose value at x∗ is
obtained by evaluating i at x.

Remark 5.7 i is a linear isometry, and one has ∀x ∈ X ‖x‖X = supl∈X∗:‖l‖≤1 |l(x)| =
‖i(x)‖∗∗.

Definition 5.8 (Reflexive) — X is reflexive if i, as above, is surjective. Or,
equivalently, X is reflexive if X ∼= X∗∗.

Example 5.9 i) If dimX <∞, then X is reflexive.

ii) If H is Hilbert, then H is reflexive.

iii) Lp(µ), 1 < p <∞ is reflexive.

iv) L1, L∞ are, in general, not reflexive.

Proposition 5.10 If X is reflexive, then X∗ is reflexive.

Recall that we showed unit balls in∞ dimensions are never (sequentially) compact. Weak
convergence allows us to restore a (weak) version of this, known as Banach-Algaoglu -
see below. For reflexive spaces, that’s the whole story. Since X may not be reflexive, one
must consider an even weaker topology.

§5.1.1 Banach-Alaoglu

Take (X, ‖·‖X) to be a normed space, X∗ to be the dual, X∗∗ to be the bidual, i : X → X∗∗

to be an isometry.

Definition 5.11 (Weak∗ Convergent) — (ln) ⊂ X∗ is weak∗-convergent to l ∈ X∗
if

lim
n→∞

ln(x) = l(x) ∀x ∈ X

We write ln →w∗ l. In fact, this is just pointwise convergence in X.
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Remark 5.12 We now have 3 notions of convergence on the dual X∗:

i) norm/strong convergence ‖ln(x)− l‖∗ → 0.

ii) weak convergence ln →w l, i.e. ∀z ∈ X∗∗, limn z(ln) = z(l).

iii) weak∗ convergence ln →w∗ l, which is equivalent to asking ii) but for z ∈ i(X)
only (where i(X) is the image of the canonical embedding).

If X is reflexive then ii) ⇐⇒ iii) (e.g. when X is Hilbert). But, in general, i) =⇒ ii)
=⇒ iii).

Theorem 5.13 (Banach-Alaoglu) Let X be separable. If (ln) ⊂ X∗ is bounded (in
X∗, i.e supn≥1 ‖ln‖ <∞) there exists l ∈ X∗ and a subsequence Λ ⊂ N s.t. ln →w∗ l
(n→∞, n ∈ Λ).

Proof. Let (xj) ⊂ X be dense. Using boundedness, pick a subsequence N ⊃ Λ1 ⊃ Λ2 ⊃
· · · ⊃ Λj ⊃ Λj+1 (inductively) such that, for all j ∈ N, ln(xj)→ aj ∈ R.

Λ := diagonal sequence of (Λj)j so ∀j ln(xj)→ aj (n→∞, n ∈ Λ). l(xj) := aj , extend
it linearly on M = span{xj : j ∈ N} and for all x ∈M

|l(x)|︸ ︷︷ ︸
finite lin. comb. of xjs

= lim
k→∞,k∈Λ

|lk(x)| ≤ sup
k
‖lk‖∗︸ ︷︷ ︸
≤C

‖x‖X

so l ∈M∗, hence it can be extended to l ∈ X∗ using corollary 3.21.

We now show ln →w∗ l (n→∞, n ∈ Λ). Let x ∈ X, and pick I ⊂ N s.t xj → x (j →∞,
j ∈ J). For such j and n ≥ 1

|ln(x)− l(x)| ≤ |ln(x− xj)|+ |l(x− xj)|+ |ln(xj)− l(xj)|

≤
(

sup
n
‖lk‖∗ + ‖l‖∗

)
‖x− xj‖X + |ln(xj)− l(xj)|

Letting first n→∞ yields limn→∞ |ln(x)− l(x)| ≤ C‖x− xj‖X , j ∈ J . Now let j →∞
and we are done.

If X is reflexive, the separability condition above in 5.13 can be removed.

Corollary 5.14 Let H be Hilbert. If (xn) ⊂ H is bounded (supn ‖xn‖H <∞), then
(xn) has a weakly convergent subsequence.

Note that we cannot replace weak convergence by strong convergence in the above
corollary, unless H is finite dimensional.

Example 5.15 X = L1[0, 1] is separable, X∗ ∼= L∞. If (fn) ⊂ L∞ is bounded, i.e.
supn ‖fn‖∞ <∞, theorem 5.13 yields a subsequence (nk)k ⊂ N and f ∈ L∞ s.t.

lim
k→∞

∫
fnk

g dx =
∫
fg dx ∀g ∈ L1[0, 1]
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Example 5.16 X = L∞[0, 1] is not separable (and also not reflexive). The following
example shows that the conclusions of the theorem fail in this case. For 0 ≤ ε ≤ 1
consider

Tε : L∞ → R Tεf = 1
ε

∫ ε

0
f dx, f ∈ L∞

Then ‖Tε‖(L∞)∗ ≤ 1, i.e Tε ∈ (L∞)∗.

One can then show {Tε : 0 ≤ ε ≤ 1} is not weak∗-sequentially compact.

Remark 5.17 If instead we considered X = C0([0, 1]) ⊂ L∞, for the above example,
which is a separable, closed subspace then theorem 5.13 applies to Tε|X . Indeed one
can see that

Tεf →ε→0 f(0), i.e Tε →w∗ δ0( Dirac functional at 0)

§5.2 Compact Operators
Compact operators form a very important class of bounded operators. Roughly speaking,
these are the closest thing to a matrix in infinite dimensions (which we shall see in
spectral theory later on).

Definition 5.18 (Compact Operator) — Let X, Y be normed spaces and T : X → Y
be linear. T is compact is for all bounded B ⊂ X (i.e. sup{‖x‖X : x ∈ B} <∞)
T (B) is (sequentially) compact, where T (B) = {Tx : x ∈ B} ⊂ Y .

Lemma 5.19 Let X, Y be Banach spaces. Then the following are equivalent.

i) T is compact.

ii) T (BX(0, 1)) ⊂ Y is compact (here, BX(0, 1) is the unit ball of radius 1 around
the origin in X).

iii) ∀(xn) ⊂ X bounded, (Txn) has a Cauchy subsequence.

Remark 5.20 Note that if X, Y are simply just normed, then the lemma 5.19 is
still true, except that you replace “Cauchy” by “convergent”.

Example 5.21 Take T = id : X → X is compact iff dimX <∞. For dimX =∞,
recall B = BX(0, 1) is not compact.

An operator T has finite rank if dim (im(T )) <∞. If T ∈ L(X,Y ) has finite rank then
T is compact. Using iii) in 5.19, let (xn) ⊂ X be bounded. Then ‖Txn‖ ≤ ‖T‖‖xn‖ ≤ C
so (Txn) ⊂ im(T ) is bounded. Since im(T ) is finite-dimensional, we can choose a
convergent subsequence.
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Remark 5.22 If dimX <∞, T is compact.

Theorem 5.23 Let X, Y be Banach spaces. If Tn : X → Y is a sequence of
compact operators and for some T ∈ L(X,Y )

‖Tn − T‖L(X,Y ) → 0

Then T is compact.

Remark 5.24 This means that the space
(
{T ∈ L(X,Y ) : T compact}, ‖ · ‖L(X,Y )

)
⊂(

L(X,Y ), ‖ · ‖L(X,Y )
)

is closed, i.e. a Banach space.

Consider the operator Tλ : `p → `p with Tλx := (λmxn)n∈N for x = (xn)n∈N, where
1 ≤ p ≤ ∞, λ = (λn)n∈N and supn |λn| <∞.

Then Tλ is well-defined and

Tλ is compact ⇐⇒ lim
k→∞

λk = 0

For “ ⇐= ” use theorem 5.23 and show ‖T − Tn‖ → 0, where Tn : `p → `p where
x 7→ Tnx = (λ0x0, . . . λnxn, 0, 0, . . . ).

For “ =⇒ ”, if Λ ⊂ N is s.t. |λn| ≥ δ, n ∈ Λ for some δ > 0, then the sequence en, n ∈ Λ,
is bounded but Tλen, n ∈ Λ, has no Cauchy subsequence since for all n,m,∈ Λ (with
n 6= m) ‖Tλen − Tλem‖p ≥ δ2

1
p .

Example 5.25 (Hilbert-Schmidt Integral Operator) Let X = L2[0, 1] and take a =
a(x, y) ∈ C0[0, 1]2. Now we define the operator A : X → X

Af(x) =
∫ 1

0
a(x, y)f(y) dy, f ∈ L2[0, 1]

Then A is well-defined, bounded since

‖Af‖22 =
∫ 1

0
|Af(x)|2 dx

Cauchy-Schwarz︷︸︸︷
≤

∫ 1

0
dx
∫ 1

0
dy|a(x, y)|2︸ ︷︷ ︸
≤C

‖f‖22

Now, we claim: A is compact. Let (f) ⊂ X, ‖fn‖2 ≤M . We can check that (Afn)
is continuous, and supn ‖Afn‖∞ <∞. Moreover,

|Afn(x)−Afn(y)| ≤
∫ 1

0
|a(x, z)− a(y, z)|︸ ︷︷ ︸

<ε if |x−y|<δ

|fn(z)|dz

≤ ε‖fn‖2 ≤Mε if |x− y| < δ

so (Afn) is equicontinuous. By Arzelà-Ascoli theorem, (Afn) has a subsequence
which converges in ‖ · ‖L∞[0,1], hence in ‖ · ‖L2[0,1].
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§5.3 Spectrum and Resolvent
Let (X, ‖ · ‖X) be a Banach space over C, and A : DA ⊂ X → X a linear operator

Definition 5.26 (Resolvent Set) — The resolvent set of A is

ρ(A) = {λ ∈ C : (λid−A) : DA → X is bijective with (λ−A)−1 ∈ L(X)}

Definition 5.27 (Spectrum) — σ(A) = C\ρ(A) is called the spectrum of A.

Definition 5.28 (Resolvent) — The resolvent of A is the map R : ρ(A)→ L(X)

ρ(A) ∈ λ 7→ Rλ = (λ−A)−1 ∈ L(X)

Example 5.29 Let X = Cn, A ∈ L(X) (i.e. DA = X), λ ∈ C.

(λ − A) invertible ⇐⇒ p(λ) := det(λ − A) 6= 0. Since p(·) = 0 has at least one,
and at most n solutions, we obtain σ(A) 6= ∅, and σ(A) contains at most n points.
Hence, ρ(A) 6= ∅ and ρ(A) ⊂ C is dense.

Lemma 5.30 If z0 ∈ ρ(A), then

D := {z ∈ C : |z − z0| <
1

‖Rz0‖L(X)
} ⊂ ρ(A)

hence ρ(A) is open (and σ(A) is closed).

Proof. z −A = (z − z0) + (z0 −A) = (1 + (z − z0)Rz0) (z0 −A).

If z ∈ D then 1 + (z − z0)Rz0 is invertible with

(1 + (z − z0)Rz0)−1 =
∑
n≥0

(z0 − z)nRnz0

Hence also
Rz = (z −A)−1 = Rz0 (1 + (z − z0)Rz0)−1 ∈ L(X)

We will revisit the operator T = Tλ : `p → `p from previously, where Tλx = (λnxn)n∈N.
Here, the spectrum of T is σ(T ) = {λk : k ∈ N}. To show this, we consider each inclusion.

For “⊃”, if x = ek then Tx = λkx so λk = T is not injective, so {λk : k ∈ N} ⊂ σ(T ),
hence by lemma 5.30 above {λk : k ∈ N} ⊂ σ(T ).

For “⊂”, if µ /∈ {λk : k ∈ N}, then ∃δ > 0 s.t. |µ− λk| > δ ∀k ∈ N. Let x ∈ `2 and define
y as y := (µ− T )x = ((µ− λk)xk)k.
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So xk = (µ−λk)−1yk and ‖x‖`2 ≤ δ−1‖y‖`2 . This implies (µ−T )−1 ∈ L(`2) is a bounded
operator. This operator is doing the mapping z ∈ `2 7→

(
z1

µ−λ1
, z2
µ−λ2

, . . .
)
∈ `2. Hence,

µ ∈ ρ(T ).

Remark 5.31 In infinite dimensions, (λ−A) is not invertible ⇐⇒ (λ−A) is not
injective. One may wonder if “lack of injectivity” is the only reason for λ /∈ σ(A).

We now introduce a few definitions. Take a linear operator A to be closed with a spectrum
σ(A).

Definition 5.32 (Point Spectrum) — Then the point spectrum of A σp(A) is
defined as

σp(A) := {λ ∈ C : λ−A is not injective}

Definition 5.33 (Eigenvalue) — The elements λ ∈ σp(A) (in the point spectrum of
A) are called eigenvalues of A.

Definition 5.34 (Eigenvector) — If you have x 6= 0 with Ax = λx (and of course
you do have such an x since you are not injective), this x is called an eigenvector
of A.

Definition 5.35 (Eigenspace) — The eigenspace of A is given by ker(λ − A) =
{x ∈ DA : Ax = λx} 6= {0}.

The above notions should be somewhat familiar already from finite dimensions; we are
just extending these so they work in infinite dimesnions as well.

Definition 5.36 (Continuous Spectrum) — The continuous spectrum of A σc(A)
is defined by the set

σc(A) := {λ ∈ C\ρ(A) : (λ−A) injective, im(λ−A) dense}

Clearly, the point spectrum of A and continuous spectrum of A are disjoint. But, we also
have the residual spectrum of A, which is whatever is left over from the other two.

Definition 5.37 (Residual Spectrum) — The residual spectrum of A σr(A) is
defined as σr(A) := σ(A)\ (σp(A) ∪ σc(A)).

If we have X = Cn, then the spectrum is the pure point spectrum, i.e σ(·) = σp(·).
Howver, below is a more interesting example.

Example 5.38 (Shift Operator) Consider the shift operator S : `2 → `2 with
S(x1, x2, . . . ) = (0, x1, x2, . . . ). Then 0 ∈ σ(S), and indeed S is not invertible (since
not surjective e.g. ∀y ∈ `2, y1 6= 0, y /∈ im(S)). But, 0 /∈ σp(S) so S is injective.

In fact, Sx = λx =⇒ 0 = λx1, x1 = λx2, . . . =⇒ xk = 0 for all k, so σp(S) = ∅.

In fact, σ(S) = D = {z ∈ C : |z| ≤ 1}, σr(S) = D, and σc(D) = δD.
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§5.4 Spectral Theory in Hilbert Spaces
From now on, up until basically the end of the course, we’re going to work in Hilbert spaces.

Let (H, 〈·, ·〉) be a Hilbert space over C, and A : DA ⊂ H → H linear operator
(DA is a linear, dense subdomain that is not necessarily equal to H), with adjoint
A∗ : DA∗ ⊂ H → H. Recall that A∗ is characterised by

∀x ∈ DA, y ∈ DA∗ 〈A∗y, x〉 = 〈y,Ax〉

and DA∗ = {y ∈ H : ly : DA → C, x 7→ 〈y,Ax〉 is continuous}.

Notation: we write A ⊂ B, read “B is extension of A”, if DA ⊂ DB and B|DA
= A.

In finite dimensions, we would usually talk about symmetric matrices, but in infinite
dimensions we have to be a little more careful here. There is something called symmetric
and something called self-adjoint (which are usually squashed together into one in finite
dimensions).

Definition 5.39 (Symmetric) — A, as given above, is symmetric if A ⊂ A∗, i.e.
DA ⊂ DA∗ and 〈Ax, y〉 = 〈x,Ay〉 ∀x, y ∈ DA.

Definition 5.40 (Self-Adjoint) — A, as given above, is self-adjoint if A = A∗, i.e
A is symmetric with DA∗ = DA.

What can we say about the spectrum of A, σ(A) for such A?

Lemma 5.41 If A is symmetric, then its pure point spectrum is real, i.e. σp(A) ⊂ R.

Proof. Note that in our inner product above 〈·, ·〉 for H, we take the left input to be
linear and the right input to be anti-linear (so if we pull out a scalar from the second
entry, it gets conjugated).

Let λ ∈ σp(A) with eigenvalue 0 6= x ∈ ker(λ−A). Then

λ‖x‖2H = 〈Ax, x〉 =symm. 〈x,Ax〉 = 〈Ax, x〉 = λ‖x‖2H

So λ = λ ∈ R

Is this true for all the spectrum of A (i.e. if we replace σp by σ)? The answer is no. So,
symmetric operators in infinite dimensions can have imaginary spectrum, for instance, as
the following example demonstrates.
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Example 5.42 Take H = L2(0, 1), with 〈f, g〉 =
∫ 1

0 fg dt. We define “A := i d
dt”.

Furthermore, f ∈ H is said to have a weak derivative f ′ if f ′ := v for some v ∈ H
and ∫ 1

0
fg′ dt = −

∫ 1

0
vg dt ∀g ∈ C∞c (0, 1)

Consider A∞ = i d
dt : C∞C (0, 1) ⊂ H → H, and extension A3 with

H1 := {f ∈ H : f has a weak derivative f ′}
DA3 = {f ∈ H1 : f(0) = 0 = f(1)} (known as Dirichlet boundary conditions)

We can show that A3 is symmetric, σp(A3) = ∅, ρ(A3)∅, σ(A3) = C.

Note that for g ∈ H, the general solution of: λf − if ′ = g is

f(t) = aeit + i

∫ t

0
eiλ(s−t)g(s) ds for some a ∈ C

To show σp(A) = ∅, if A3f = if ′ = λf for some λ ∈ C, then by the solution above,
f(t) = aeiλt, f ∈ DA3 and f(0) = 0 =⇒ a = 0 =⇒ f ≡ 0.

For σ(A3) = C, notice that λ − A3 is never surjective (so λ /∈ ρ(A3)). Consider
g(s) := eiλs, from the solution above, you can obtain a = 0 from the boundary
conditions. And so, f(t) = ie−iλtt (f(1) 6= 0, so f /∈ DA3 so not surjective).

This shows that you can absolutely have a symmetric operator which develops a non-
real spectrum. But, if A is self-adjoint, its whole spectrum is real - as we shall see
below.

Lemma 5.43 Let A ⊂ A∗ (i.e. A is symmetric). Then,

∀z ∈ C ∀u ∈ DA, ‖(z − a)u‖H ≥ |Im(z)|‖u‖H

(so for z /∈ R =⇒ (z −A) is injective, i.e. z /∈ σp(A)).

Proof. For u ∈ DA, 〈u,Au〉 = 〈Au, u〉 (by symmetric) = 〈u,Au〉 ∈ R. Hence,

|Im(z)|‖u‖2H = |Im(〈u, (z −A)u〉)|
≤ |〈u, (z −A)u〉| ≤ ‖u‖H‖(z −A)u‖H

Proposition 5.44 If A = A∗ (i.e. A is self-adjoint), then A is closed.

It is not difficult to show the proposition above and it follows directly from the defini-
tions.

Proposition 5.45 If A = A∗ (i.e. A is self-adjoint), then σ(A) ⊂ R.
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Proof. Let z ∈ C\R, then we want to show z ∈ ρ(A) i.e z − A : DA → H is bijective,
with (z −A)−1 ∈ L(H).

We will show z − A is surjective (since for injectivity apply Lemma 5.43 and ‖(z −
A)−1‖L(H) ≤ 1

|Im(z)| <∞).

To show this, we first argue M := im(z −A) ⊂ H is closed.

Let vk = (z − A)uk → v (in norm) as k → ∞. By lemma 5.43, ‖uk − ul‖H ≤
1

|Im(z)|‖vk − vl‖H → 0 (as k, l→∞).

Hence (uk) is Cauchy and uk → u for some u ∈ H. But since A = A∗, it has a closed
graph by proposition 5.44, so v = (z −A)u, i.e. we have shown M , as above, is closed.

Now we show this implies the surjectivity of z −A. Assume M 6= H. Pick v ∈M⊥\{0},
then ∀u ∈ DA

〈v, (z −A)u〉 = 0 or 〈v,Au〉 = z〈v, u〉

Hence, DA 3 u 7→ 〈v,Au〉 is continuous, v ∈ DA∗ = DA and Av = A∗v = zv.

But by lemma 5.43,
|Im(z)|︸ ︷︷ ︸
6=0

‖v‖H ≤ ‖(z −A)v‖H = 0

yielding v = 0, which is a contradiction.

§5.5 Spectral Theorem for Compact Self-Adjoint Operators
As is customary in this section, we take H to be Hilbert over C with an inner product
〈·, ·〉 and ‖x‖2H = 〈x, x〉.

The following is an extension of the familiar result from linear algebra concerning the
diagonalisation of symmetric matrices.

Theorem 5.46 (Riesz-Schauder) Let T : H → H be a linear operator which is
compact and self-adjoint. Then

i) σp(T ) ⊂ R

ii) σp(T ) contains at most countably many eigenvalues λk ∈ R\{0}, which ac-
cumulate at most at λ = 0 (although of course they may not accumulate at
all).

iii) Let λks be counted with multiplicity (i.e. if for instance the eigenspace of λ1
was two dimensional then you write two copies of λ1 etc.). One can choose
eigenvectors ek (corresponding to λk) s.t. ek ⊥ el ∀k 6= l (i.e they are pairwise
orthogonal) and one has

∀x ∈ H Tx =
∑
k

λkek〈x, ek〉
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Remark 5.47 To clarify point ii) in the statement of Riesz-Schauder: when we
have a sequence, we can talk about accumulation points which are points whose
neighbourhood you visit infinitely often, and here the only such case is zero.

Point iii) is really just the spectral decomposition of the operator T .

Example 5.48 Consider Tλ : `2 → `2 (as seen before with Tλx := (λmxn)n∈N). We
have previously seen Tλ is compact ⇐⇒ limk→∞ λk = 0.

And also Tλ is self-adjoint ⇐⇒ λk ∈ R, which implies σp(Tλ) = {λk : k ∈ R}.

Note that compactness of T implies that T ∈ L(H). In the lemma below we drop
compactness and we just assume we have a bounded operator (that doesn’t necessarily
have to be compact).

Lemma 5.49 let T ∈ L(H) be self-adjoint. If λ1 6= λ2, with λ1, λ2 ∈ σp(T ) and
with eigenvectors ei 6= 0 for i = 1, 2 (i.e. λiei = Tei), then

〈e1, e2〉 = 0

Proof. We have

λ1〈e1, e2〉 = 〈λe1, e2〉 = 〈Te1, e2〉
self-adjoint︷︸︸︷= 〈e1, T e2〉

= 〈e1, λ2e2〉
λ2=λ2︷︸︸︷= λ2〈e,e2〉

Since λ1 6= λ2, 〈e1, e2〉 = 0.

We can also formulate lemma 5.49 in a slightly diferent way, taking T : H → H to be
compact and self-adjoint (which we can do since this is a stronger condition than given
in the lemma).

If we define for λ ∈ σp(T )\{0}, Xλ = ker(λ− T ) ( 6= {0}), then by lemma 5.49

Xλ ⊥ Xλ′ ∀λ 6= λ′ with λ, λ′ ∈ σp(T )\{0}

Lemma 5.50 Let T be compact, self-adjoint and λ ∈ σp(T )\{0}. Then,

i) dim(Xλ) <∞

ii) ∀r > 0, σp(T )\Br(0) is finite.

We won’t prove this lemma, although this lemma can be used to prove statement ii) in
Riesz-Schauder theorem 5.46. By lemma 5.50

An = σp(T ) ∪ {z : 1
n+ 1 ≤ |z| <

1
n
} (⊂ σp(T )\B 1

n+1
(0))

is finite and σp(T )\{0} = ⋃
nAn is thus countable. This also implies that σp(T )\{0} has

no accumulation point.
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Remark 5.51 Lemma 5.50 gives important structural information on the spectrum.
In particular, ii) implies that σp(T )\{0} is countable, with no accumulation point,
and by i) each eigenvalue has finite multiplicity.

Remark 5.52 From statement iii) in Riesz-Schauder theorem 5.46, we actually
have that H admits the orthogonal decomposition

H = ker(T ) ⊕
⊕

λ ∈ σp(T )\{0}︸ ︷︷ ︸
countably many

Xλ

where Xλ = ker(λ− T ), which are finite dimensional.

Lemma 5.53 If A ∈ L(H) is self-adjoint, then

‖An‖L(H) = ‖A‖nL(H)

Proof. We proceed by induction. The n = 1 case is trivial. Assume it is true for n and
consider n+ 1. For x ∈ H, ‖‖ ≤ 1,

‖Anx‖ = 〈Anx,Anx〉 = 〈An+1x,An−1x〉
≤ ‖An+1x‖‖An−1x‖ ≤ ‖An+1‖‖An−1‖

By the inductive hypothesis,
‖A‖2n = ‖An‖2 = sup

‖x‖≤1
‖Anx‖2 ≤ ‖An+1‖ ‖An−1‖︸ ︷︷ ︸

‖A‖n−1

=⇒ ‖An+1‖ ≥ ‖A‖n+1

Now, the “≤” case is very similar (and applying self-multiplicativity of ‖ · ‖).

This motivates the following definition of the spectral radius of an operator A.

Definition 5.54 (Spectral Radius) — The spectral radius rA of any operator A is
defined as

rA := lim
n→∞

‖An‖
1
n

L(H)

Lemma 5.55 If A is self-adjoint, then(
lim
n→∞

‖An‖
1
n

L(H) =
)
rA = ‖A‖L(H)

Theorem 5.56 If A ∈ L(H), then rA = supz∈σ(A) |z|.

Proofs for the above are not given here, although can be easily found online. More details
about spectral theory and functional analysis in general can be read in textbooks and
other, more thorough, lecture notes online. But for this course, we end the discussion
here.
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