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Introduction

Throughout this informal guide, I intend to provide the reader with the
sufficient fundamental theory required for olympiad mathematics and other
related competitions, alongside motivating worked examples.

I believe that, with enough determination, anyone who has not been exposed
to much of competition mathematics can become comfortable with the type
of problems and do well, and that is my objective with this guide.

Most mathematical olympiad problems can be solved without the use of
advanced theorems.

That is the beauty of mathematical olympiads, and quite often we can
explain a solution to someone with very elementary mathematical knowledge.
Having said that, it is undoubtedly handy to know some theory, and this
way we might find ourselves able to write down solutions more easily
and the case of actively learning theorems and proofs gives us a more
confident understanding of where mathematical ideas come from and how
they connect together.
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Theory

In this section, I supply the reader with the most fundamental tools necessary,
as far as ‘knowledge’ is concerned, in order to tackle problems in mathematical
olympiads and competitions. The theory in this book, however, is not
complete to the extent of even some national level competitions, and instead
is meant as a starting point to more elementary competitions. Consequently,
there may be certain other results which have not been covered here.

In light of all this, this book is aimed at those with very little background
with mathematical olympiads who intend to learn some of the basic grounding
material. This is most suited to the UK education system and in particular
the UKMT competitions BMO1 and BMO2, though I have done my best
to keep the theory as broad and versatile as possible, so as to be applicable
to competitions from all countries.

Learning all the theory that follows will put the reader in good stead,
however it should be noted that all olympiad questions also require a
significant level of ingenuity which will come after a great deal of practice.

Proofs and derivations for theorems are not always provided so I would
encourage the reader to look these up if they are struggling with a theorem
or are unfamiliar to a theorem. I would also encourage the reader to have
a go at the example problems themselves first before viewing the solution.

The most relevant topics to olympiad mathematics can be broken down into
four categories: algebra, combinatorics, (Euclidean) geometry and number
theory.1

1Some like to exclude functional equations as its own area, however I have included this in algebra.
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INTRODUCTION

0.1 Techniques for Proof
Almost all olympiad problems will involve proving a statement or finding
a solution and proving that it is the only possible one that holds under
certain conditions, for instance. There are many methods of proof, and
occasionally we would simply just have to follow the logical mathematical
steps which should be sufficient to prove something directly - proof by
deduction. This is especially useful with inequalities.

Or, we may have to be slightly more careful and consider separately all
the relevant cases - proof by exhaustion. For example, investigating what
happens to some type of number when divided by some positive integer.

Those are both fairly standard and logical ways of approaching a proof.
Below, however, I cover the two slightly more ‘fancy’ ways of proving
something and both are extremely crucial to have in our arsenal.

0.1.1 Proof by Contradiction
Proof by contradiction is a clever and elegant way of proving a statement,
particularly useful in number theory. Essentially, we assume that the
statement we are trying to prove is false and show that this leads to
some mathematical contradiction, which in turn implies that the original
statement must have been true. I demonstrate a common example.

Example Prove that
√

2 is irrational.

Solution Suppose the contrary - that
√

2 is rational. If it were rational,
it can be expressed as a fraction p

q , where p and q are coprime (i.e. p and
q share no common factor so p

q is simplified to lowest terms). Since p and
q are coprime, both of them cannot be even.

√
2 = p

q
=⇒ 2q2 = p2

Since the left hand side is even, the right hand side must also be even.
Therefore, p2 must be even, which implies that p must be even. But, if p
is even we can express it as p = 2k where k is some integer. So we have
p2 = (2k)2 = 4k2.

∴ 2q2 = 4k2 =⇒ q2 = 2k2
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INTRODUCTION

From the above, we see that q must be even as the right hand side is even.
But that’s a contradiction! It was stated that both p and q cannot be
even. Assuming that

√
2 is rational led to a contradiction, meaning that√

2 cannot be rational. Hence we’ve proved that
√

2 must be irrational.
�

0.1.2 Proof by Contrapositive
We can use a proof by contrapositive when proving a statement of the form
‘if a then b’. This is logically equivalent to proving the contrapositive: ‘if
not b then not a’.

Example Prove that if n2 is a multiple of 3 then n must be a multiple
of 3.

Solution We will try and prove the statement by considering the contrapositive:
when n is not a multiple of 3. Therefore, n can take two possible forms:
n = 3k + 1 or n = 3k + 2 for some integer k.

First, let’s consider n = 3k + 1

n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1

But 3(3k2 + 2k) + 1 is not divisible by 3, so n2 is not divisible by 3. Let’s
next consider n = 3k + 2

n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1

But 3(3k2 + 4k + 1) + 1 is not divisible by 3, so n2 is not divisible by 3.

We have shown that if n is not a multiple of 3 then n2 is not a multiple of
3 (i.e. the contrapositive statement is true). So, if n2 is a multiple of 3, n
must also be a multiple of 3. �

0.1.3 Proof by Induction
Arguably, proof by induction is the most useful form of proof when it comes
to proving facts in the olympiad world. It is especially useful when we spot
a pattern and we ‘guess’ a formula, and usually the best way to show this
formula holds for all values is to proceed with induction.
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INTRODUCTION

A proof by induction is structured by first showing the statement is true
for some initial value - this is known as the base case. Then we assume
the statement is true for some value of k - this is known as the inductive
hypothesis. After this, we use our assumption to show that the statement
is true for k + 1 - this is known as the inductive step. And this would
conclude the proof.

For the intuition behind why such a proof works, let’s suppose we want to
prove a statement P (n) is true for all positive integers n. Then, we would
show that P (1) is true, and after assume P (k) is true for k ≥ 1 and show
that this implies that P (k + 1) is also true. If P (1) is true then P (2) is
also true since P (k) true implies P (k + 1) true. But if P (2) is true then
P (3) is also true and if P (3) is true so is P (4) and so on, so the original
statement P (n) is true for all positive integers.

To help the reader understand the concept a little more, I will present an
analogy here. Suppose that each integer is a domino (all placed in order).
We know that if a domino falls, the next one falls too. The first domino
(representing 1) falls, causing 2 to fall, then 3 to fall, then 4 to fall, etc. As
you can see, it seems obvious that all dominos must eventually fall, even
though there are infinitely many of them.

Example Show that, for every positive integer n, the number 33n+4 +
72n+1 is a multiple of 11.

Solution Let f(n) = 33n+4 + 72n+1. Base case: n = 1, 33(1)+4 + 72(1)+1 =
343 + 2187 = 2530 = 11 × 230. So, f(1) is a multiple of 11. Inductive
hypothesis: assume f(k) = 33k+4+72k+1 is a multiple of 11 for some positive
integer k. Inductive step: now consider f(k + 1).

f(k + 1) = 33(k+1)+4 + 72(k+1)+1

= 33k+7 + 72k+3

= 27
(
33k+4) + 49

(
72k+1)

= 27
(
33k+4 + 72k+1) + 22

(
72k+1)

= 27f(k) + 22
(
72k+1)

Since f(k) is a multiple of 11 by our hypothesis and 22(72k+1) is also a
multiple of 11, f(k + 1) is a multiple of 11. Hence, by the principle of
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mathematical induction, f(n) is a multiple of 11 for all positive integers.
�

Example Prove 3n < n! for every positive integer n greater than 6.
n! is n factorial which means n × (n − 1) × (n − 2) × ... × 2 × 1 e.g.
3! = 3× 2× 1 = 6.

Solution Let P (n) be 3n < n!. Base case: n = 7, 37 = 2187 < 5040 = 7!.
So, P (7) is true. Inductive hypothesis: let P (k) be true, so we assume
3k < k! where k > 6. Inductive step: now consider P (k + 1)

3k+1 = 3 · 3k < 3 · k! (by our assumption)

Since k > 6 =⇒ k + 1 > 7, so k + 1 > 3.

3k+1 < 3 · k! < (k + 1) · k! = (k + 1)!
∴ 3k+1 < (k + 1)!

By the principle of mathematical induction, P (n) is true for all positive
integers n greater than 6. �

Strong Induction
Strong induction is a slight extension to ‘normal’ induction. In strong
induction, the only difference is that instead of assuming a statement holds
true for some one value of k to prove it is true for k + 1, we assume that
the statement holds true for all values 1, 2, 3, ..., k to prove it is true for
k + 1.

Example Show that every positive integer n can be written as a sum of
distinct powers of two.

Solution Base case: for n = 1 note that 20 = 1, hence our proposition
holds for n = 1. Inductive hypothesis: assume that our proposition holds
for every m in 1 ≤ m ≤ k, so every positive integer m in the interval can
be written as a sum of distinct powers of two. Inductive step: now, let’s
consider what happens with k + 1. k + 1 can either be even or odd, so we
have two separate cases to consider.

If k + 1 is even, then observe that k+1
2 must be an integer. Now as 1 ≤

k+1
2 ≤ k we know by our inductive hypothesis that k+1

2 can be written as a
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sum of distinct powers of 2. But then multiplying k+1
2 by 2 gives

k + 1
2 · 2 = k + 1

and since each distinct power of 2 in the sum of k+1
2 is multiplied by a

factor of 2, each power of 2 is increased by 1 and thus remains distinct.

If k + 1 is instead odd, then we know k is even. Furthermore, by our
inductive hypothesis, we know that k can be written as a sum of distinct
powers of 2. But if k is even, k does not contain a 20 = 1 in its sum of
distinct powers of 2. To show this, note that k, by definition of an even
integer, can be expressed as k = 2m for some positive integer m. And since
we can view multiplication as repeated addition we have

k = 2m = 2 + 2 + 2...+ 2︸ ︷︷ ︸
m times

If the sum were to contain a 20 = 1 we clearly would need to express k as
2m+ 1 which would make it odd not even. Hence, we see that

k + 1 = k + 20

and if k+ 1 is odd, it can be written as a sum of distinct powers of two. It
follows by strong induction that for all positive integers n, we can express
n as a sum of distinct powers of two. �

This is actually a great fact because it is essentially saying that we can
express all (base 10) numbers in binary.

0.1.4 If and only if
If you are ask to prove a statement of the form ‘show that p is true if and
only if q is true’, then only showing that if q is true implies that p is true
is not sufficient. We must also show the converse - that if p is true implies
that q is true. In mathematics the notation p =⇒ q means p implies q.
The notation p⇐⇒ q means p if and only if q; in other words p implies q
and q implies p.

To say ‘a only if b’ means that a can only ever be true when b is true. That
is, b is necessary for a to be true. And, to say ‘a if and only if b’ means
that a is true if b is true, and b is true if a is true. That is, a is necessary
and sufficient for b.
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INTRODUCTION

a =⇒ b a only if b b if a
a⇐= b a if b b only if a
a ⇐⇒ b a if and only if b

An example may be if we take a = ‘lemon’, b = ‘yellow’. Then a =⇒ b,
but it is not necessarily the case that b =⇒ a. So, this is not a necessary
and sufficient condition (or an ‘if and only if case’).

0.2 Approaching a Problem
It is usually not best to dive straight into an olympiad problem blindly
after reading it. Instead, it is much better to take the time to understand
the problem very thoroughly (no ink is ever wasted) and to gain an overall
intuition behind what is going on. Testing out simple cases of the problem
help, or trying to spot or guess a pattern for the problem.
I would like to demonstrate this notion of diving straight into a problem
with one of my favourite, yet simplistic, problems.

Example If x2 − 3x+ 1 = 0, what is the value of x2 + 1
x2?

Solution It is very tempting, particularly in the pressured exam situation,
to dive straight into this problem and find the value of x with the quadratic
formula and substitute it into the expression. However, the value of x does
not come out as a nice number at all, and especially with a non-calculator
exam this way will prove to be rather laborious.
Here I present a much neater solution which simply requires a little bit of
pre-thought. Note that x 6= 0, since 02 − 3(0) + 1 = 1 6= 0. So we can
divide by x - that’s the key step.

x− 3 + 1
x

= 0

x+ 1
x

= 3(
x+ 1

x

)2
= 9

x2 + 2 + 1
x2 = 9

∴ x2 + 1
x2 = 7
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Chapter 1

Algebra

1.1 Polynomials
We define a polynomial Pn(x) of degree n as:

Pn(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 (1.1.1)

where ai ∈ R and an 6= 0.

We should note that polynomials of odd degree have an infinite range.

1.1.1 Remainder Theorem

This is a topic usually covered very early on in A-Level in the UK, and I
think is important to gain a better intuition behind polynomials.

Given some polynomial P (x), let us compute the value of P (a) where a
is any real number. Let the value of P (a) = r. The theorem states that
if our polynomial P (x) was divided by (x − a) then the remainder after
division is r. Of course if r is 0, then (x − a) must be a factor of P (x) -
this is most useful.

1.1.2 Factor Theorem

Given some polynomial P (x), if P (a) = 0 for some a ∈ R, then (x − a)
divides P (x).

13



1 ALGEBRA

Example Prove the useful lemma that for polynomial P (x) with integer
coefficients, and any two integers a, b,

a− b | P (a)− P (b)

Solution By the factor theorem, if (a− b) is a factor of P (a)−P (b) then
if we make the substitution a = b, P (a)−P (b) should be 0. In fact, we get
P (b)− P (b) = 0, hence (a− b) is a factor of P (a)− P (b). Now, since a, b
are integers and our polynomial P (x) has integer coefficients, then (a− b)
completely divides P (a)− P (b). �

Another, perhaps more careful, way we can do this problem is by expressing
P as some general polynomial so P (x) = anx

n + an−1x
n−1 + ... + a1x + a0

where an, ..., a1, a0 are integer coefficients. So,

P (a)− P (b) =
(
an · an + an−1 · an−1 + ...+ a1 · a+ a0

)
−(

an · bn + an−1 · bn−1 + ...+ a1 · b+ a0
)

= an (an − bn) + an−1
(
an−1 − bn−1) + ...+ a1 (a− b)

Each of the terms in the right hand side above are divisible by (a− b) (see
(1.1.4)) hence (a− b) divides P (a)− P (b). �

1.1.3 Binomial Theorem
This is an efficient way to expand brackets that have two terms to any
integer power n. I think it is useful to be aware of this, particularly for
speed, and it can be specifically useful in number theory.

(x+ y)n ≡
n

0

xn +
n

1

xn−1y +
n

2

xn−2y + ... (1.1.2)

...+
 n

n− 1

xyn−1 +
n
n

yn

where
(
n
k

)
= nCk = n!

k!(n−k)! and represents a binomial coefficient. The
binomial coefficient is explained more thoroughly in the combinatorics
section. Below is a fun, yet tough, example, which doesn’t require binomial
theorem explicitly but only a good understanding of multiplying brackets.
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1 ALGEBRA

Example What is the coefficient of x9 in the expansion of

(1 + x)(1 + x2)(1 + x3)...(1 + x100)

Solution We have 100 factors, each which are the sum of 1 and a positive
power of x. When the product is expanded, each term results from picking
a 1 from some factors and a positive power of x from others. For example,
if the positive powers of x you pick in one case are x3, x21 and x35 then the
term is x3+21+35 = x59 - the ones don’t matter since 1× x = x.

For the coefficient of x9 therefore, the problem reduces to how many
different ways can we make the term x9 from our expansion. Thus we
consider, in how many ways can we write 9 as a sum of distinct positive
integers.

9 = 9 9 = 1 + 8 9 = 6 + 2 + 1
9 = 2 + 7 9 = 5 + 3 + 1
9 = 3 + 6 9 = 4 + 3 + 2
9 = 4 + 5

If we have the sum of more than three terms making 9, then not all of
them will be distinct. So from the list above we have 8 different ways of
making x9. Hence, the coefficient of x9 is 8 .

1.1.4 Useful Identities
Here are some very helpful identities; it is worth knowing all of these since
they are indispensable to making life easier when it comes to the algebra
bash.

The difference of two squares is the most basic and, arguably, most crucial
identity to know.

x2 − y2 ≡ (x+ y)(x− y) (1.1.3)
In the next factorisation, we can also use a difference of two squares,
however most of the time it is nicer to use the following.

xn − yn ≡ (x− y)(xn−1 + xn−2y + ...+ xyn−2 + yn−1) (1.1.4)

Substituting −y for y gives another identity when n is odd.

xn + yn ≡ (x+ y)(xn−1 − xn−2y + ...− xyn−2 + yn−1) (1.1.5)

15



1 ALGEBRA

Often the next factorisation is very useful particularly in problems where
we must find integer solutions.

xy + x+ y + 1 ≡ (x+ 1)(y + 1) (1.1.6)
xy − x− y + 1 ≡ (x− 1)(y − 1) (1.1.7)

In the one below, notice how all the + change to × and vice versa on each
side.

xyz + (x+ y)(y + z)(z + x) ≡ (x+ y + z)(xy + yz + zx) (1.1.8)

This one is less obvious, but useful nonetheless.

x3 + y3 + z3 − 3xyz ≡ (x+ y + z)(x2 + y2 + z2 − xy − yz − zx) (1.1.9)

The next is known as the Sophie Germain Identity, and it displays how
the sums of two squares can be factorised in a rather neat way.

x4 + 4y4 = x4 + 4x2y2 + 4y4 − 4x2y2

= (x2 + 2y2)2 − (2xy)2

= (x2 + 2xy + 2y2)(x2 − 2xy + 2y2) (1.1.10)

Another great fact is that the set S, which consists of all integers that can
be expressed as the sum of two squares, is closed1 under multiplication.
This is due to the following identity.

(a2 + b2)(c2 + d2) ≡ (ac+ bd)2 + (ad− bc)2 (1.1.11)

Series
It is worth knowing the following common standard results:

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n = n(n+ 1)
2 (1.1.12)

n∑
i=1

i2 = 12 + 22 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)
6 (1.1.13)

n∑
i=1

i3 = 13 + 23 + 33 + · · ·+ n3 = n2(n+ 1)2

4 (1.1.14)

Notice the neat idea that ∑ i3 = (∑ i)2. We can also have arithmetic and
geometric series:

1This just means that when you multiply two numbers that can be expressed as the sum of two
perfect squares, you get another number which is also the sum of two perfect squares.
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1 ALGEBRA

• In an arithmetic series each term differs by a constant difference d,
giving the sequence
a, a + d, a + 2d, . . . , a + (n − 1)d. The sum of these terms is Sn =
a
2 (2a+ (n− 1)d).

• In a geometric series each term differs by a constant multiple r, giving
the sequence
a, ar, ar2, . . . , arn−1. The sum of these terms is Sn = a(1−rn)

1−r . Sometimes,
with geometric sequences, we can compute the sum of infinitely many
terms should this converge (e.g. 1 + 1

2 + 1
4 + . . . ). This is given by

S∞ = a
1−r .

1.1.5 Vieta’s Formulas
Let’s start with the simple case of a cubic. Consider P (x) = Ax3 +Bx2 +
Cx + D. Let the roots of the cubic be α, β, γ. Note this means P (α) =
P (β) = P (γ) = 0. So we can now say,

Ax3 +Bx2 + Cx+D = A(x− α)(x− β)(x− γ)
= Ax3 − A(α + β + γ)x2 + A(αβ + βγ + γα)x− Aαβγ

Comparing coefficients, we can obtain the following relationships:

α + β + γ = −B
A

(1.1.15)

αβ + βγ + γα = C

A
(1.1.16)

αβγ = −D
A

(1.1.17)

We can extrapolate this information and generalise the pattern for any
polynomial of degree n.

Consider Pn(x) = anx
n + an−1x

n−1 + ... + a1x + a0. Let α1, α2, ..., αn be
roots of Pn(x). Then:

∑
αi = −an−1

an∑
αiαj = an−2

an
...

α1α2 × ...× αn = (−1)na0

an
(1.1.18)
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Notice how we have the sum of roots, then the pair-wise sum of roots, then
the triplet-wise sum of roots, and so on until we get the product of roots.
It is important to note that Vieta’s formulas apply to all roots, whether
real or complex. So, when a problem asks for real roots, we may be unable
to apply Vieta’s formulas directly.

Example Given the equation x2 − 5x + 9 = 0 has two solutions α and
β, find α2 + β2.

Solution By Vieta’s formulas, α+ β = −−5
1 = 5 and αβ = 9

1 = 9. So we
have

α2 + β2 = (α + β)2 − 2αβ = 52 − 2× 9 = 25− 18 = 7

1.2 Inequalities
Inequalities are perhaps the most significant section of any olympiad algebra.
Here, we cover the most fundamental ones required.2

1.2.1 Core Inequalities
Sums of squares
One should be aware the squares are always non-negative (for real numbers)
- i.e. greater than or equal to 0. The following derives from the fact that
(x− y)2 ≥ 0.

x2 + y2 ≥ 2xy (1.2.1)

Example Prove that x2 + y2 + z2 ≥ xy + yz + zx

Solution

(x− y)2 ≥ 0 =⇒ x2 + y2 ≥ 2xy
(y − z)2 ≥ 0 =⇒ y2 + z2 ≥ 2yz
(z − x)2 ≥ 0 =⇒ z2 + x2 ≥ 2zx

2x2 + 2y2 + 2z2 ≥ 2xy + 2yz + 2zx
=⇒ x2 + y2 + z2 ≥ xy + yz + zx �

2For the interested reader, others worth adding to your arsenal (though more applicable for IMO)
include Muirhead’s and Schur’s inequalities, as well as Jensen’s which is easier to grasp than the other
two.
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AM-GM
The arithmetic mean - geometric mean inequality, also known as AM-GM,
states that the arithmetic mean is greater than or equal to the geometric
mean of a set of non-negative real numbers.

For non-negative real numbers x1, x2, ..., xn
x1 + x2 + ...+ xn

n
≥ n
√
x1x2...xn (1.2.2)

Often, the most trivial case is used and can be shown from (1.2.1).
x+ y

2 ≥ √xy

Example For positive real numbers a, b, c where a + b + c = 6, prove
that

ab2c3 ≤ 108

Solution Write b as b
2 + b

2 and c as c
3 + c

3 + c
3 . By AM-GM

a+ b
2 + b

2 + c
3 + c

3 + c
3

6 ≥
(
a · b2 ·

b

2 ·
c

3 ·
c

3 ·
c

3

) 1
6

a+ b+ c

6 ≥
 ab2c3

4× 27

 1
6

1 ≥
ab2c3

108

 1
6

∴ ab2c3 ≤ 108 �

Rearrangement
Suppose we have a permutation of the set {a1, a2, a3, a4, a5} (that is, a1, a2, a3,
a4, a5 in any order) and a permutation of the set {b1, b2, b3, b4, b5}. What
are the maximum and minimum possible values of

a1b1 + a2b2 + ...a5b5 ?
This leads to the rearrangement inequality. If our sets are sorted with
a1 ≥ a2 ≥ ... ≥ a5 and b1 ≥ b2 ≥ ... ≥ b5, then the maximum value we can
attain is

a1b1 + a2b2 + a3b3 + a4b4 + a5b5 (1.2.3)
and the minimum value we can attain is

a1b5 + a2b4 + a3b3 + a4b2 + a5b1 (1.2.4)
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Example a, b and c are positive real numbers. Show that

a3 + b3 + c3 ≥ a2b+ b2c+ c2a

Solution By writing a3 + b3 + c3 as a× a2 + b× b2 + c× c2, we can see
that both sides are of the form a1b1 + a2b2 + a3b3, just ordered differently.

a, b and c are positive so the lists a, b, c and a2, b2, c2 are ordered in the
same way.

Let {a1, a2, a3} be a permutation of {a2, b2, c2} and {b1, b2, b3} be a permutation
of {a, b, c}. By the rearrangement inequality, a1b1 + a2b2 + a3b3 takes its
largest value when a1, a2, a3 is ordered in the same way as b1, b2, b3. So this
largest value is bigger than any other pairing of the two sets. So:

a3 +b3 +c3 = a2×a+b2×b+c2×c ≥ a2×b+b2×c+c2×a = a2b+b2c+c2a

�

1.2.2 Further Inequalities
Cauchy-Schwarz
For those that are comfortable with vectors, you will be aware for two
vectors a and b, a · b = |a| |b| cos θ ≤ |a| |b|. This is essentially what the
Cauchy-Schwarz inequality states.3

The Cauchy-Schwarz inequality is extremely versatile in general mathematics
and can be used in vectors, integration and matrices. However, the following
form is most common for olympiad algebra.

For real numbers a1, a2, ..., an and b1, b2, ..., bn

(a2
1 + a2

2 + ...+ a2
n)(b2

1 + b2
2 + ...+ b2

n) ≥ (a1b1 + a2b2 + ...+ anbn)2 (1.2.5)

which is equivalent to  n∑
i=1

a2
i

 n∑
i=1

b2
i

 ≥
 n∑
i=1

aibi

2

(1.2.6)

3On a sidenote, I love this inequality so much that I wrote a mini handout for it which can be found
on kn7811.com/cauchy_schwarz.pdf .
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Equality holds if the sequences are proportional. That is, if a1
b1

= a2
b2

= ... =
an

bn
. There is a very useful form of this inequality known as the Engel Form

where we make the substitution ak = a2
k√
bk

and bk =
√
bk into (1.2.5).

a2
1
b1

+ a2
2
b2

+ ...+ a2
n

bn
≥ (a1 + a2 + ...+ an)2

b1 + b2 + ...+ bn
(1.2.7)

Weighted AM-GM
The weighted AM-GM inequality is an extension to AM-GM , and it is not
completely obvious either.

If a1, a2, ..., an are non-negative real numbers, and λ1, λ2, ..., λn are non-negative
real numbers (the ‘weights’) which sum to w, then it follows:

λ1a1 + λ2a2 + ...+ λnan
w

≥ w
√
aλ1

1 a
λ2
2 ...aλn

n (1.2.8)

The common case of w = 1 is usually used.

Example Let a, b be positive real numbers such that a + b = 1. Show
that

aabb + abba ≤ 1

Solution Let the ‘weights’ be a, b, so by weighted AM-GM we have

a · a+ b · b
a+ b

≥
(
aabb

) 1
a+b

But since a + b = 1 =⇒ a2 + b2 ≥ aabb. We can do a similar thing with
weights b, a and by weighted AM-GM we have

b · a+ a · b
a+ b

≥
(
abba

) 1
b+a

=⇒ 2ab ≥ abba. Adding the two final inequalities

a2 + b2 + 2ab ≥ aabb + abba

(a+ b)2 ≥ aabb + abba

∴ aabb + abba ≤ 1 �
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1.3 Extraneous Solutions
In algebra, we can sometimes introduce erroneous solutions from a step, so
it is worth stressing that we must check our solutions into the original
equation at the end. This is most common when we do the step of
‘squaring both sides’, however we may also find this problem arising when
working with the modulus function or piecewise functions such as floor
functions.

Example Solve
√
x+ 3 = x− 3.

Solution
√
x+ 3 = x− 3
x+ 3 = (x− 3)2

x2 − 7x+ 6 = 0
(x− 1)(x− 6) = 0

So x = 1 or x = 6. But x = 1 is not a valid solution. So we reject that and
the only valid solution is x = 6. This is because the square root function
only outputs non-negative numbers so we must satisfy x− 3 ≥ 0 =⇒ x ≥
3. Below is a slightly more challenging and relevant example.

Example Solve
√

10 +
√
x3 + 100 = 10−

√
x3 + 100

Solution Let’s make the substitution a =
√
x3 + 100

√
10 + a = 10− a
10 + a = 100− 20a+ a2

a2 − 21a+ 90 = 0
(a− 6)(a− 15) = 0

So, a = 6 or a = 15 =⇒
√
x3 + 100 = 6, 15.

x3 + 100 = 36, 225
x3 = −64, 125
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So, x = −4 or x = 5. But, we can’t conclude here! We must check these
solutions actually satisfy the original equation. For x = −4, we have√

10 +
√

(−4)3 + 100 ?= 10−
√

(−4)3 + 100
√

10 + 6 ?= 10− 6
√

16 ?= 4

which is in fact true so x = −4 is a solution. Now let’s check x = 5√
10 +

√
(5)3 + 100 ?= 10−

√
(5)3 + 100

√
10 + 15 ?= 10− 15
√

25 ?= −5

which is not true so we reject x = 5, which is an extraneous root. Hence,
the only possible solution is x = −4 .

I hope that this demonstrates that we must be very careful when presented
with such problems.

1.4 Functional Equations
Outside of olympiads, it is not extremely common to find many problems
involving functional equations. Without some techniques, these sort of
problems can seem very challenging. Generally, we may be able to find
functions which satisfy the original conditions, however we have to be
rigorous in our argument and we would normally have to find all such
functions so we must make sure that we exhaust all cases. A golden rule
of functional equations:

Choose substitutions to make as much cancel as possible - but not
everything.

I will demonstrate some tricks and techniques we can use to solve functional
equations, but it is, as usual, a case of logically piecing together the
appropriate tools and using some ingenuity.

1.4.1 Substitutions
Here are some helpful substitutions we can make:
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1. Substitute 0 or other constants which can help make parts of the
equation constant.

2. Substitute −x in place of x. This can lead us to determine if there is
any nice symmetry in the function.

3. If we have two variables at play, substitute y = x.
4. If we have functions within functions then it is helpful to remove the

function inside. For instance, in the case f(x−f(x)) setting x = f(x)
would be a good idea.

5. It can sometimes be handy to multiply an equation by a constant or
x and then subtract equations e.g. f(x)− xf(x) which could take us
a step further to finding f .

Example Find all functions f : R → R which satisfy f(x)f(y) = f(x +
y) + xy for all real numbers x, y.

Solution We will consider the equation f(x)f(y) = f(x + y) + xy, and
proceed with various substitutions.

Let x = 0 =⇒ f(0)f(y) = f(y), so there are two cases: either f(0) =
f(y) = 0, or f(0) = 1.

If f(0) = f(y) = 0, then f(x) · 0 = f(x + y) + xy =⇒ f(x + y) = −xy.
It makes sense to let y = −x here, which gives f(0) = x2 so x = 0. But,
because y and x are symmetrical4, this gives us the trivial solution that
x = y = 0 which is unhelpful.

Now, let’s take the case f(0) = 1. To fully utilise this, we can let x = 1
and y = −1, because then our f(0) can cancel, and we get a 0 on the RHS
which is very useful.

f(1)f(−1) = f(0)− 1 =⇒ f(1)f(−1) = 0

Therefore, either f(1) = 0 and/or f(−1) = 0.

In the case f(1) = 0, letting y = 1 gives f(x)f(1) = f(x + 1) + x =⇒
f(x + 1) = −x. Now, make the transformation x → x − 1 and we obtain
f(x) = 1− x .

4This means that if we replace x with y and y with x, the original equation remains unchanged.
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In the other case f(−1) = 0, letting y = −1 gives f(x)f(−1) = f(x− 1)−
x =⇒ f(x− 1) = x. Similarly, letting x → x + 1 gives the final solution
f(x) = x+ 1 .

1.4.2 Other Advice
1. Always try to take an educated guess of what the function could be,

so as to have an idea of where we’re aiming, and this can also be very
helpful for finding good substitutions.

2. For functions defined on the natural numbers, induction is a good way
forward.

3. For functions which are restricted to polynomials, considering the
degree of the polynomial is always necessary! So, degree of LHS =
degree of RHS.

Example Find all polynomials P (x) with real coefficients satisfying
P (P (P (x)))− 3P (x) = −2x for all x.

Solution Let’s give our polynomial P (x) degree n. Thus, we must have
the degree of LHS = degree of RHS. The degree of P (P (P (x))) will be
n × n × n = n3. So, the degree of the LHS would be n3 as n3 ≥ n for all
integers n ≥ 0.

However, we must also take into account the case for when 3P (x) =
P (P (P (x))), which would give a degree of 0. This would be when P (x) =
3 1

3x, but we can reject this case as the degree of the RHS is 1, and not 0.

So, for degree of LHS = degree of RHS, we have n3 = 1 =⇒ n = 1, as
n ≥ 0. This means we can express P (x) as ax+ b. From here on, it is just
an algebra bash.

P (P (P (x))) = P (P (ax+ b))
= P (a(ax+ b) + b)
= a [a(ax+ b) + b] + b

∴ a [a(ax+ b) + b] + b− 3ax− 3b = −2x
=⇒

(
a3 − 3a

)
x+ (a2b+ ab− 2b) = −2x
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Now, we can compare coefficients to determine a and b.

a3 − 3a = −2 =⇒ (a− 1)2(a+ 2) = 0 =⇒ a = 1 or a = −2
a2b+ ab− 2b = 0 =⇒ b = anything when a = 1 or a = −2

So, P (x) = x+ k or P (x) = −2x+ k for any k ∈ R.
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Chapter 2

Combinatorics

In a sense, it is usually the combinatorics problems which require the most
thought and problem solving, since they do not rely on recalling many
theorems or ideas at all. However, I think that the following ideas are
most useful and provide assistance when formally writing out a solution to
a combinatorics problem.

2.1 Pigeonhole Principle
The pigeonhole principle (PHP), also known as the Dirichlet principle,
is a very obvious and intuitive fact yet it is extremely powerful and can
be used to provide explanations for not so trivial facts, as shown in the
examples.

Naive Case If more than n pigeons are placed into n pigeonholes, then
at least one pigeonhole must contain more than one pigeon.

General Case If more than kn objects are placed into n boxes, then at
least one box must contain more than k objects.

Example Prove that at a party with at least two people, there are two
people who know the same number of people.

Solution Let n be the number of people at the party. The maximum
number of people a person can know is n − 1 (know all of them) and
the minimum they can know is 0 (know no one). The number of people
someone can know therefore is some number in the set {0, 1, 2, ..., n − 1}.
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However, the key insight is that there cannot be someone who knows
everyone and someone who knows no one. So while there are n people they
can all either know some number of people from the set {0, 1, 2, ..., n−2} or
from the set {1, 2, 3, ..., n−1}. Both these sets have n−1 values and there
are n people. Let the pigeons be the people and the pigeonholes be the
possible number of people each person can know. There are n pigeons but
n − 1 pigeonholes, so by the pigeonhole principle at least one pigeonhole
contains more than one pigeon i.e. there at least two people who know the
same number of people at the party. �

Example There are 5 distinct points randomly placed on the surface of
a sphere. Prove that at least 4 of the points lie on the same hemisphere
(inclusive hemisphere).

Solution Pick any two distinct points on the surface of the sphere. These
two points define a great circle (look this up if you do not know what
it looks like). Now, there are two hemispheres with this great circle as
boundary, and each of the other three points lie in either hemisphere. By
the pigeonhole principle, at least two of those three points lie in the same
hemisphere, and that hemisphere thus contains at least four of the five
given points. �

2.2 Counting
It is extremely common for problems in combinatorics that we have to
count very carefully and logically. Generally, these problems can be easy
to trip up on and so we must be very meticulous in counting the cases to
avoid double counting or missing a case, especially when numbers are big,
and to be organised by using things like factorials or choose notation where
necessary. Although, be aware that much of the time merely simple logic
and thought is required.

2.2.1 Binomial Coefficients
Binomial coefficients are a family of positive integers that occur as coefficients
in the binomial theorem. Binomial coefficients are represented asn

r

 = nCr = n!
r!(n− r)! (2.2.1)

28



2 COMBINATORICS

where k! = k × (k − 1) × (k − 2) × ... × 2 × 1. Binomial coefficients form
each number in Pascal’s triangle. We are mostly interested in binomial
coefficients as they allow us to quickly compute the number of ways we
can choose r objects from n objects, where the order we choose the objects
in does not matter. For example if we have 16 balls and we want to
choose 3 of them, then the number of different ways of choosing 3 balls is
16C3 = 560.

Example If we have 5 red balls and 7 blue balls, what is the probability
of picking exactly 2 red and 2 blue balls.

Solution There are 5C2 ways of picking 2 red balls and there are 7C2
ways of picking 2 blue balls. There are also 12C4 of picking any 4 balls in
general. So the desired probability is

5C2 × 7C2
12C4

= 14
33

Sometimes, we may have to choose objects where the order does matter -
these are known as permutations rather than combinations previously. For
example, if we have n objects and we want to pick r objects from them
such that the order matters (i.e. {1, 2, 3} is not the same as {2, 1, 3}), then
the number of ways to do this is

nPr = n!
(n− r)! (2.2.2)

Example Howmany four letter passwords can be formed if the characters
allowed to use without repetition are 0, 1, 2, 3, ..., 9 and A,B,C, ..., Z?

Solution We have 10 + 26 = 36 choices of characters to choose from. So
we have to arrange 4 objects out of 36 available objects. The number of
ways of doing this is equal to

36P4 = 36!
(36− 4)! = 1413720

We may also have to arrange objects where the order does matter, instead
of having to simply choose them. If we have n different objects then there
are n! ways of arranging them. If not all the objects are different then we
must also account for that. Suppose instead there are n objects with 3
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of them which are the same and rest different, then there are n!
3! ways of

arranging them. In general, with n total objects and a identical objects, b
different identical objects and c different identical objects, there are n!

a!×b!×c!
different ways of arranging our n objects.

Example How many ways are there of arranging the letters in the word
‘mathematics’?

Solution Notice that there are 11 letters, with letters m, a and t appearing
twice. So the number of ways to arrange the letters is

11!
2!× 2!× 2! = 4989600

It is also worth bearing in mind how binomial coefficients can lead to
sequences of other common numbers, in particular triangular numbers.
The nth triangular number T (n) is defined by

T (n) =
n+ 1

2

 = n(n+ 1)
2 (2.2.3)

Triangular numbers are a common sequence, especially in counting arguments,
and should be recognised immediately.

2.2.2 Principle of Inclusion and Exclusion
The principle of inclusion and exclusion (PIE) is a counting technique
which computes the total number of elements in different sets (which may
overlap). This way, PIE guarantees that all elements are counted exactly
once and prevents double counting. It is easiest to consider the case of two
sets - a venn diagram can be used for visualisation.

Set A contains some elements and set B contains some elements. But,
there are some elements which appear in both set A and set B. So, in
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order to count the total number of elements in either A or B, we have the
following formula

|A ∪B| = |A|+ |B| − |A ∩B| (2.2.4)

Note that for some set S, |S| denotes the number of elements in S (also
known as the cardinality of S). Here, the formula is telling us that the total
number of elements in both sets A and B is the total number of elements
in A plus the total number of elements in B minus the total number of
elements in both A and B - notice how this prevents double counting.

PIE gives us a similar, but slightly more involved, formula for counting the
total number of elements in three sets A, B and C.

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
(2.2.5)

The pattern continues for greater number of sets, with alternating plus/minus
signs, but we are unlikely to be dealing with more then three sets. At first,
it can be difficult to see directly where this is applicable so I include an
example which seems like a simple question but is easy to overcount or
undercount elements, so PIE works quite nicely.

Example Of the numbers 1, 2, 3, ..., 6000, how many are not multiples of
2, 3 or 5?

Solution Effectively, this question is asking us how many numbers from
1, ..., 6000 are multiples of 2, 3 or 5, and since we know that there are 6000
numbers in total, we can subtract these to find how many numbers are not
multiples of 2, 3 or 5 - this makes life slightly easier for us.

Let X be the set of numbers in 1, ..., 6000 which are divisible by 2; Y be
the set of numbers which are divisible by 3; Z be the set of numbers which
are divisible by 5. Notice how some numbers are multiples of both 2 and
3 or all of 2, 3 and 5 for example, so we use PIE to avoid double counting
numbers. We want the total number of elements which are multiples of 2,
3 or 5. So we want |X ∪ Y ∪ Z|.

|X ∪ Y ∪ Z| = |X|+ |Y |+ |Z|−|X ∩ Y |−|X ∩ Z|−|Y ∩ Z|+ |X ∩ Y ∩ Z|

One should know that if a number is a multiple of both a and b then it is a
multiple of ab. So our equation tells us the total number of elements which
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are multiples of 2, 3 or 5 is the number of multiples of 2 plus the number
of multiples of 3 plus the number of multiples of 5 minus the number of
multiples of 6 minus the number of multiples of 10 minus the number of
multiples of 15 plus the number of multiples of 30. This gives

|X ∪ Y ∪ Z| = 3000 + 2000 + 1200− 1000− 600− 400 + 200 = 4400

So there are 6000− 4400 = 1600 numbers which are not divisible by 2, 3
or 5.

2.3 Recurrence Relations
Recurrence relations are used to reduce complex problems into an iterative
process, based on simpler versions of the problem. A common example case
where we may want to use a recurrence relation is to define the Fibonacci
sequence.1 If we let Fn be the nth Fibonacci number, then we have F0 =
F1 = 1 and Fn+1 = Fn + Fn−1. That is, each term is the sum of the two
previous terms. So, F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, F5 = 8, and so
on.

2.3.1 Solving Recurrence Relations
Let’s say we have a simple recursion such as a0 = 1 and an = 2 ·an−1. This
has an explicit formula, more commonly known as a closed form, which is
an = 2n. More generally, if we had a0 = 1 and an = k · an−1, then the
solution is an = kn.

As it turns out, when we have a recurrence relation like this, which relates
previous terms in a linear way, then the solution will always be geometric
(i.e. a sum of some constants each raised to the power of n).

In general, for a linear recurrence of the form

xn = c1xn−1 + c2xn−2 + · · ·+ ckxn−k (2.3.1)

we can plug in our geometric form xn = arn, which gives

arn = ac1r
n−1+ac2r

n−2+· · ·+ackrn−k =⇒ rk = c1r
k−1 − c2r

k−2 − · · · − ck
(2.3.2)

1It is not completely straightforward to find an explicit nth term expression for Fibonacci numbers.
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This is known as the characteristic polynomial. We can find the roots of
the characteristic polynomial, which is of degree k, in order to find the
closed form which is of the form

xn = a1 (r1)n + a2 (r2)n + · · ·+ ak (rk)n (2.3.3)

where r1, . . . , rk are the roots of the characteristic polynomial and a1, . . . , ak
are constants which can be found by plugging numbers in.

Example Find a closed form for the nth Fibonacci number Fn.

Solution We should be aware that Fibonacci numbers are defined by the
following recurrence, beginning with F0 = 0, F1 = 1.

Fn+1 = Fn + Fn−1

Since our recurrence is linear, our solution will be geometric and we get

arn+1 = arn + arn−1 =⇒ arn−1 (r2 − r − 1
)

= 0

This gives us the characteristic polynomial r2 − r − 1 = 0. Now, solutions
to this are r = 1±

√
5

2 . So our overall closed form will involve a sum of these
two roots.

∴ xn = A ·
1 +

√
5

2

n +B ·
1−

√
5

2

n

To find A and B, let’s simply use the values of F0 = 0 and F1 = 1. This
gives the following simultaneous equations.

A+B = 01 +
√

5
2

A+
1−

√
5

2

B = 1

This givesA = 1√
5 andB = − 1√

5 . Hence, Fn = 1√
5

1 +
√

5
2

n − 1√
5

1−
√

5
2

n

Aside from using the characteristic polynomial, there is a neat trick we can
also employ if we have a recurrence in the following form:

xn = xn−1 + f(n) (2.3.4)

If you rewrite the recurrence as xn−xn+1 = f(n), then summing up all the
equations ranging from 1 to n will give us an − a0 = ∑n

k=1 f(k) as all the
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2 COMBINATORICS

terms in the middle are subtracted. If we can determine ∑n
k=1 f(k), then

this idea is very helpful. So, we obtain closed form:

an = a0 +
n∑
k=1

f(k) (2.3.5)

2.3.2 Catalan Numbers
Catalan numbers are a particular family of numbers, which crop up in
several problems that lead to the same recurrence relation. The nth
Catalan number C(n) is defined by

C0 = 1 and Cn+1 =
n∑
i=0

Ci · Cn−1 (2.3.6)

This makes more sense after seeing them in application, but for example,
we can take C4,

C4 = C0C3 + C1C2 + C2C1 + C3C0 = 1× 5 + 1× 2 + 2× 1 + 5× 1 = 14

For example, consider 2n people sat in a circle. Then, the number of ways
that n pairs of people engage in handshakes so that no arms cross is given
by Cn. The diagrams below illustrates this. For n = 1, there is only C1 = 1
way (left) and for n = 2, there are C2 = 2 ways (right).

For n = 3, there are C3 = 5 ways.

2.4 Tiling and Colouring
Tiling and colouring are techniques used often when we are dealing with
problems involving some a × b board (e.g. a chessboard). We would
typically colour the squares on our board and exploit these colours to prove
some statements.
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The clearest way to demonstrate colouring is through the following classic
example.

Example If we remove two diagonally opposite corners from an 8 × 8
chess board, can the remaining 62 cells be exactly tiled with dominoes?
[Note: a domino takes up 2× 1 or 1× 2 space.]

Solution A standard 8 × 8 chessboard comes with alternating coloured
cells, and we will make use of this idea.

It should be clear that no matter where we place a domino, it will always
cover one grey cell and one white cell - since the domino must take up the
space of two adjacent squares.

However, if we remove two diagonally opposite corners from a chessboard,
we remove two cells which are the same colour. As a result, we get 32
cells of one colour and 30 of the other colour, so there is no way of placing
dominoes to exactly cover our chessboard. �

The same argument shows that if any two small squares of the same colour
are removed, then the remaining board cannot be tiled with dominoes.

2.4.1 Alternative Colourings
Although it is useful to colour a board alternating between black and white
squares, we may sometimes need to employ a different colouring strategy
depending on the problem.

To demonstrate an interesting case, let’s consider a 5× 5 board. Let’s also
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say that we have 8 straight trominoes (tiles which take up 3× 1 or 1× 3)
space. Clearly, the 8 trominoes can only fill up a maximum of 24 of the 25
squares, so one square will always be left uncovered.

Suppose that we cover our 5× 5 board with all 8 trominoes, then what are
the possible candidates for the uncovered square?

If we experiment with this idea, it seems that the centre square is always
being left uncovered. It’s difficult to find any other cell. Here’s a possible
configuration:

In fact, it will always be the centre square which is uncovered; to prove
this we can look for colourings which have useful properties with trominoes.

A tromino covers 3 squares, so it makes sense to use a colouring with three
colours so that each tromino can cover one square of each colour.

As shown above, it is helpful to go for a diagonal pattern. I have gone
for two similar boards with opposite-directional diagonal patterns, which
will help us in our proof. From this pattern, we see that there are 9 white
squares but only 8 grey and dark grey squares. So, there is an extra 1
white square.

Since the trominoes can only cover exactly one of each colour when placed
on these boards, there will always be one white square left uncovered.
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So, in the left board, the trominoes cover all the squares leaving one white
one. And, in the right board they cover all the squares also leaving one
white one. The only white sqare common to both boards is the central
one, and hence it is always the central square which remains uncovered.
�

This idea of using two similar board colourings (as opposed to just one)
can be especially helpful in proving certain facts. Deciding on a colouring
should be done carefully and logically too.
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Chapter 3

Geometry

Olympiad geometry tends to require a great deal of imagination and ingenuity.
A lot of the time, these questions involve spotting where we can apply a
theorem and then apply the theorem and deduce further properties of the
setup.

3.1 Constructing Diagrams

A clear, big diagram is the key to success in a geometry question. The
diagram is our visualisation of the setup, so a clumped diagram is of no help
at all. An accurate diagram allows us to make good guesses about certain
properties of the setup, which helps enormously when it comes to solving
geometry problems. Sometimes it is helpful to slightly offset the diagram
a little bit to try and avoid assumptions. So, if we had to construct a
triangle, it is best to avoid it making it look isosceles or right-angled.

I would advise doing the diagram in pencil (so to help add/rub out any
points which we may find eases/distracts the problem), and I would thoroughly
recommend using dashed lines, particularly in cases where we want to
extend a line or arc, make reflections, or circumscribe objects.

A rule of thumb: it is not usually necessary to draw the centre of the circle
in most geometry problems; this is what we have circle theorems for. We
may end up in circular arguments and find ourselves ending up proving
one of the circle theorems, as they are all derived by using the properties
of the center and radii.
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3 GEOMETRY

3.2 Elementary Theorems
Here are some very helpful, basic theorems which the reader should initially
become comfortable and fluent with employing in their solutions. Some
things are assumed such as basic ideas of quadrilaterals, including the idea
of parallelogram diagonals bisecting each other.

3.2.1 Lines
We will use the following diagram for reference.

Vertically Opposite Angles
Vertically opposite angles are angles which are equal and opposite to each
other created when two straight lines intersect. In problems it is sometimes
very helpful to use the converse. For instance, if ∠PXB = ∠Y XA then
PXY and AXB are straight lines. Although such facts can seem trivial,
if it is not explicitly stated in the problem we must mention in their proof
that the three points lie on a straight line by the converse of vertically
opposite angles to avoid being penalised.

Parallel Lines
Again, similar ideas apply for parallel lines. Parallel lines are two lines
which do not intersect at any point. If AB is parallel to CD then ∠Y XA =
∠XY B (alternate angles) and ∠BXY = ∠DYQ (corresponding angles).
Also be prepared to use the converse; for instance if you are asked to prove
two lines are parallel, it may be easier to consider the angles.
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3 GEOMETRY

3.2.2 Polygons
We are mostly concerned with regular, convex polygons. These include
pentagon, hexagon, heptagon, octagon etc. and we can generalise such a
polygon with n sides as an n-gon. Of course, we should be able to see that
as n → ∞ our n-gon tends towards a circle. The key results for polygons
that we need to be aware of are that the sum of the exterior angles is
always 360◦, and that the size of each interior angle is given by

180(n− 2)
n

where n is the number of sides. It is often also useful to rearrange this to
find the number of sides.

Another idea worth remembering is the area of a hexagon

A = 3
√

3
2 s2 (3.2.1)

where s is the side length of the hexagon. This formula comes about from
splitting the hexagon into six equilateral triangles and using ‘12ab sin θ’. We
can generalise this for a regular polygon of n sides

A = n

4 tan
(180
n

) s2 (3.2.2)

3.2.3 Triangles
These three sided shapes are the building blocks of olympiad geometry
problems. Note that three vertices of a triangle define a circle uniquely.
Also, know the formulas for the area of a triangle - both ‘12bh’ and ‘12ab sin θ’.

Right-Angled Triangles
The hypotenuse is the side opposite the right angle in a right angled
triangle. We must know Pythagoras’ theorem which states for a right angled
triangle with hypotenuse of length z and other sides of length x, y

x2 + y2 = z2 (3.2.3)

It is worth having in mind the first few Pythagorean triples (3, 4, 5); (5, 12, 13);
(7, 24, 25). Of course, we can multiple each of these by a scalar to form
new triples e.g. (6, 8, 10). We should also be familiar with sin, cos and
tan as the ratios of opposite and hypotenuse, adjacent and hypotenuse and
opposite and adjacent respectively.
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3 GEOMETRY

Triangle Inequality
This idea is extremely obvious - essentially the sum of the lengths of any
two sides in the triangle is larger than or equal to the length of the third
side. The triangle inequality states in triangle ABC

AB +BC ≥ AC

BC + AC ≥ AB

AC + AB ≥ BC (3.2.4)

Equality is achieved only when the triangle is degenerate.

FULL Sine Rule
The full sine rule states that in a triangle with side lengths a, b and c and
the angle opposite the sides are A, B and C respectively then

a

sinA = b

sinB = c

sinC = 2R (3.2.5)

where R is the radius of the circumcircle (that is, the circle through
each vertex of the triangle). This fact which includes the link to the
circumradius is not always taught with the sine rule, but when solving
olympiad geometry problems it can be very useful to know.

Cosine Rule
The cosine rule states that in a triangle with side lengths a, b and c and
the angle opposite the sides are A, B and C respectively then

c2 = a2 + b2 − 2ab cosC
b2 = a2 + c2 − 2ac cosB
a2 = b2 + c2 − 2bc cosA (3.2.6)

We may also have to rearrange this to find the size of angles. Notice how
we use cosine rule when we have two sides and the angle between them,
and we want to find the length of the remaining side.

Example If the sides of a triangle have lengths 2, 3, and 4, what is the
radius of the circle circumscribing the triangle?

Solution Let the angle opposite side length 2 be θ. Then by cosine
rule

22 = 32 + 42 − 2 · 3 · 4 cos θ =⇒ cos θ = 32 + 42 − 22

2 · 3 · 4 = 7
8
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So, sin θ =
√

15
8 . By the full sine rule

R = 1
2

a

sin θ = 1
2 ·

2
√

15
8

= 8√
15

3.2.4 Similar and Congruent Triangles
This topic is so crucial that it’s been made into its own subsection, rather
than in the ‘triangles’ subsection. If you don’t spot one of these then you
make your life much harder when solving geometry problems.

Two triangles are similar if they have the same interior angles - so that
one is a scaled version of the other. This means that the ratios of the
respective sides of the triangles are constant and equal to each other. If
we have a triangle with sides of length a, b and c then a similar triangle to
that would be one with sides of length ka, kb and kc where k ∈ R.

When a problem asks us to prove a fact about the product or ratio of two
or more lengths, then similar triangles are usually at play - but make sure
to prove that triangles are similar in the first instance by considering their
interior angles.

Two triangles are congruent if they are exactly the same triangle. This
means they have the same three sides and exactly the same three angles.
There are some ways to identify congruence:

• SSS: if we have two triangles with all three sides equal.

• SAS: if we have two triangles where we know two sides and the angle
between them are equal.

• ASA: if we have two triangles where we know two angles and the
included side are equal.

• AAS: if we have two triangles where we know two angles and the
non-included side are equal.

• RHS: if we have two right angled triangles with the same length of
hypotenuse and the same length for one other of the two sides.

If we can identify any of the conditions above for two triangles, then we can
say the two triangles are congruent. Note that SSA, which specifies two
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sides and a non-included angle, and AAA, which specifies three angles,
are not sufficient themselves to prove congruence.

3.2.5 Circle Theorems
We will use the following diagram for reference.

Angle at centre is twice angle at circumference
Consider quadrilateral ABFD. F is the centre of the circle. The angle
subtended at the circumference is twice the angle subtended at the center
so ∠DAB = 2×∠DFB. There is an important special case of this theorem,
where angles in a semicircle are 90◦.

Angles in the Same Segment
Angles in the same segment are equal, so ∠DAB = ∠DEB. We can
reason this is true since both these angles have the same angle at the
center, ∠DFB.

Cyclic Quadrilaterals
If we have four points which can be circumscribed, then these four points
form a cyclic quadrilateral. Opposite angles in a cyclic quadrilateral add
up to 180◦. Consider quadrilateral ABDE, then ∠DEA+ ∠ABD = 180◦
and ∠BDE + ∠EAB = 180◦.

When solving a problem, if we identify a cyclic quadrilateral it is worth
circumscribing lightly since we can deduce other facts such as using the
angles in the same segment theorem.
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Alternate Segment Theorem
The alternate segment theorem is a favourite to employ. Whenever we see
a tangent, we should always try and use this theorem wherever possible -
it can be the key to getting started with many geometry problems.

The alternate segment theorem states that the angle between a chord and
a tangent through one of the endpoints of the chord is equal to the angle
in the alternate segment. By the alternate segment theorem, ∠BCA =
x.

3.2.6 Length Ratios
Aside from using similar triangles, we can also involve the ratios of side
lengths in a geometry problem, using the two following theorems.1 This
turns out to be very convenient in making progress with many problems.

Intercept Theorem
A crucial fact that we should be aware of is, ab = c

d ⇐⇒
a−c
b−d . Actually, this

is not extremely obvious, and nor is it well known, but it is very helpful.
Of course, we must have that a, b, c, d 6= 0 and b 6= d. The proof is very
simple:

a

b
= c

d
=⇒ ad = bc

a

b
= a(b− d)
b(b− d) = ab− ad

b(b− d) = ab− bc
b(b− d) = a− c

b− d
�

1There are many others which also relate the ratio of lengths together, such as power of a point and
Ceva’s - see Further Theorems.
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We can use this idea in the following setup:

Clearly, if we have a parallel line intersecting a figure as above, we have
similar triangles. However, we can go further than this. Of course, BP

BA =
BQ
BC , by similar triangles. But if we use the fact above, then we also get the
intercept theorem:

BP

PA
= BQ

QC
(3.2.7)

Angle Bisector Theorem

If we have an angle bisector in our setup, then the following relation holds.

a

b
= x

y
(3.2.8)

Conversely, if the relation holds, then we have an angle bisector at play.
We can esily prove this with the sine rule and using the identity sin θ =
sin (180− θ).

It is almost always inevitable to apply this idea whenever we have angle
bisectors at play in the problem.
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3.3 Further Theorems

3.3.1 Concurrency and Collinearity

Concurrency refers to the idea that three or more lines intersect at the
same point. Collinearity refers to the idea that three or more points lie on
the same line.

Ceva’s Theorem
This theorem addresses concurrency. By looking at the figure above on
the left side, then if we drop lines from each vertex of a triangle to the
opposite sides, these lines are concurrent if and only if:

AE

EC
× CF

FB
× BD

DA
= 1 (3.3.1)

We can think of this statement, which seems like a lot going on, as taking
each line segment going around the triangle’s perimeter.

Menelaus’ Theorem
This theorem addresses collinearity. By looking at the figure above on the
right side, then if we have points on the lines of each side of a triangle,
these points are collinear if and only if:

AD

DB
× BE

EC
× CF

FA
= 1 (3.3.2)

Simson Line
A very interesting and useful result. It can be proved with Menelaus and
trig, or we could use a simpler similar triangles argument.
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If we have a point P on the circumcircle of triangle ABC, and we drop
perpendiculars from P to each of the sides of ABC, then these points on
the sides of ABC are collinear. Hence, above we have that point D, E, F
are collinear.

3.3.2 Triangle Centres

There are four main triangle centres we need to be aware of. We will use
the following diagram for reference.

Points P1, P2, P3 are formed by dropping perpendiculars (or altitudes)
from the opposite vertices. Points M1, M2, M3 are the midpoints of the
sides.
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Centroid
The centroid is the intersection of the three medians of the three vertices,
so the point G above formed from the intersections of line segments AM1,
BM2, CM3. We can actually prove that these three line segments are
concurrent in the first place using Ceva’s theorem.

Orthocentre
The orthocentre is the intersection of the triangle’s three altitudes, so the
point H above formed from the intersections of line segments AP1, BP2,
CP3. Again, we can prove the existence of this concurrent point H using
Ceva’s theorem.

Circumcentre
The circumcentre is the centre of a triangle’s circumscribed circle. That
is, the circle which passes through all three vertices of the triangle. It is
shown by the point O above.

Incentre
The incentre is the centre of a triangle’s inscribed circle. That is, the circle
which is tangent to all three sides of the triangle. It is shown by the point
I above. Quite often when solving problems, it is helpful to draw the lines
from the incentre to the tangential contact points on the sides (of course,
these create right angles).

Without having to draw the incircle itself, we can construct the incentre
by drawing angle bisectors from each of the vertices of our triangle. These
angle bisectors are concurrent and meet at the incentre.

For both the orthocentre and the circumcentre, it is worth noting the
following:

• If a triangle is obtuse (so it involves an angle bigger than 90◦), then
the orthocentre and circumcentre will be strictly outside the triangle.

• If a triangle is acute angled, these points will be inside the triangle.

• If a triangle is right angled, both the points will be on the triangle
itself.

Note that unlike the other two, the centroid and incentre of a triangle are
always inside the triangle.
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Moreover, points O, G, H are collinear. So, the circumcentre, centroid and
orthocentre are collinear - this is known as the Euler line. We can prove
the existence of the Euler line using Menelaus’ theorem.

Euler’s Theorem
Euler’s theorem tells us the distance d between the centre of the incircle
and the centre of the circumcircle of any triangle. If the circumcircle of
a triangle has radius R and the incircle has radius r, then the distance d
between the centres is given by:

d2 = R2 − 2Rr (3.3.3)

An interesting follow up result is that since all squares are non-negative,

R2 − 2Rr = R(R− 2r) ≥ 0 =⇒ R ≥ 2r (3.3.4)

Heron’s Formula
Heron’s formula gives us a way to compute the area of a triangle if we
know only its side lengths. For a triangle with sides a, b, c, the area A is
given by:

A =
√
s (s− a) (s− b) (s− c) (3.3.5)

where s = a+b+c
2 and is known as the semi-perimeter.

This formula is not particularly useful in problems, although it is a handy
idea to be aware of and one that is very simple to learn.

3.3.3 More Circle Theorems
Power of a Point
If we have the following setup with a circle, and a point outside the
circle:

49



3 GEOMETRY

A, B, C, D are points of intersection with circle, and line PT is tangent
to the circle.

4PAD and 4PCB are indirectly similar. It follows that

PA× PB = PC × CD (3.3.6)

Also, 4PAT is indirectly similar to 4PTB (using the alternate segment
theorem), so

PA× PB = PT 2 (3.3.7)
It is well worth memorising these results to save time of chasing similar
triangles.

Ptolemy’s Theorem
With Ptolemy’s Theorem, we concern ourselves with the side and diagonal
lengths of a cyclic quadrilateral. For a cyclic quadrilateral ABCD,

AC ×BD = (AB × CD) + (AD ×BC) (3.3.8)

An easy way to remember this (and see what is actually going on) is:

The sum of the product of the opposite sides is equal to the product of the
diagonal lengths.

3.4 Trigonometry
Trigonometry is not extremely important for olympiad problems, since
they tend to be susceptible to other methods anyway. However, I thought
it would be worth including, since it is imperative to know it inside out for
‘pre-university’ mathematics including for university entrance tests. Often
trigonometry can help as another approach for geometry questions too
where we need to make use of angles and things like sine rule.

3.4.1 Trigonometric Identities
These are the most crucial identities to be able to recall fluently.

sin2A+ cos2A = 1 (3.4.1)

tan2A+ 1 = sec2A (3.4.2)
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1 + cot2A = csc2A (3.4.3)

sin(A±B) = sinA cosB ± sinB cosA (3.4.4)

cos(A∓B) = cosA cosB ∓ sinA sinB (3.4.5)

tan(A±B) = tanA± tanB
1∓ tanA tanB (3.4.6)

If we let A = B, we get the double-angle formulae.

The factor formulae are also very important since they convert sums of
trigonometric functions into products and vice versa.

sin(A+B) + sin(A−B) = 2 sinA cosB (3.4.7)

sin(A+B)− sin(A−B) = 2 cosA sinB (3.4.8)

cos(A+B) + cos(A−B) = 2 cosA cosB (3.4.9)

cos(A+B)− cos(A−B) = −2 sinA sinB (3.4.10)

−A 90− A 180− A
sin -sinA cosA sinA
cos cosA sinA -cosA
tan -tanA cotA -tanA

Below, I provide the reader with an example which is only meant to be fun;
it has very little resemblance to the style of a serious olympiad problem
other than some basic problem solving and geometry techniques.

Example If the angles A, B and C of a triangle are in an arithmetic
progression and if a, b and c denote the lengths of the sides opposite to A,
B and C respectively, then what is the value of the expression

a

c
sin 2C + c

a
sin 2A
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Solution By the sine double-angle formula
a

c
sin 2C + c

a
sin 2A = a

c
2 sinC cosC + c

a
2 sinA cosA

= 2a cosC · sinC
c

+ 2c cosA · sinA
a

But, by the sine rule, sinA
a = sinC

c . Substituting this into our expression
above gives

a

c
sin 2C + c

a
sin 2A = 2 (sinA cosC + sinC cosA)

= 2 sin(A+ C)

Now, we know A+B+C = 180◦ due to sum of interior angles in a triangle.
Also, since the angles are in arithmetic progression

A = A

B = A+ d

C = A+ 2d

So, A+B+C = 3A+ 3d = 180◦ =⇒ A+ d = 60◦. But A+ d = B, hence
B = 60◦. Also, A+ C = 180◦ −B = 120◦.

∴
a

c
sin 2C + c

a
sin 2A = 2 sin(A+ C) = 2 sin(120◦) =

√
3

3.5 Loci
Olympiad loci questions in general are often the most challenging, as far as
geometry is concerned. The key idea to have when tackling these questions
is to:

Look for quantities or objects that are constant or fixed.

By definition, a locus is the set of all points, which satisfy one or more
specified conditions. Often, the set of points can trace out a nice figure or
curve. A neat example is that the locus of points formed by the focus of a
parabola rolling along a straight line is a ‘cosh curve’.2

The best way with loci problems is through plenty of practice and use basic
geometry theorems, but also try and play around with what’s going on,
try special cases and, most importantly, try to find a quantity which is
fixed.

2The hyperbolic cosine function defined by ex+e−x

2 .
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Example A variable triangle has a fixed incircle. Given that its circumradius
is constant, find the locus of the circumcentre.

Solution At first glance, this problem seems quite intimidating. However,
it is worth drawing a diagram to get a feel for what’s going on and then to
identify quantities which are constant no matter how we shift the setup.

I have drawn a solid triangle and its circumcircle with centre O and a
dashed triangle and its circumcircle with centre O′. As per the question,
both triangles have the same fixed incircle with incentre I and the same
circumradius.

Of course, from the question, the incentre I, the circumradius R and the
inradius r are fixed for any of our triangles. By, Euler’s theorem, we know
that

OI2 = R2 − 2Rr
where OI denotes the distance between the circumcentre and incentre for
any of our triangles. Since R2 − 2Rr is clearly constant, this means that
OI must also be constant.

In other words, the distance between the circumcentre and the incentre for
all our satisfied triangles must be constant. Now, we are after the locus
of the circumcentre. As the incentre is fixed, we have that the locus of
the circumcentre O must be a circle centred at I with radius

√
R2 − 2Rr.

�
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Chapter 4

Number Theory

Number theory is the study of the integers and their properties. Problems
usually concern themselves with finding integer solutions, dealing with
primes, divisibility or showing a number can be written in some form (such
as the sum of two squares).

Note that it is extremely common to prove results in number theory by
contradiction.

It is also worth being clear about the different sets of numbers we can
have.1

• R is the set of all real numbers, including numbers from integers to
irrational numbers like π and everything else in between.

• Q is the set of all rational numbers, which are numbers that can be
expressed as a fraction of two whole numbers. If a number x /∈ Q,
then x is irrational and cannot be expressed as a fraction of two
whole numbers e.g.

√
2.

• Z is the set of all integers, which are whole numbers both positive
and negative.

• N = Z+ is the set of all positive integers so 1, 2, 3, . . . etc., and we
have two names for the same thing here, since occasionally N includes
0, but this will be specified and is the exception rather than the norm.

1I am deliberately excluding complex numbers.
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4.1 Divisibility
Suppose that m and n are integers. We say that m divides n, if there is an
integer d such that n = md. In this case, we also say that m is a divisor
or factor of n, and we can write m|n.

4.1.1 Numbers in base 10
We can define a number N with digits an, an−1, . . . , a1, a0 as

N = 10n · an + 10n−1 · an−1 + · · ·+ 101 · a1 + 100a0 (4.1.1)

For example, 1729 = 103 · 3 + 102 · 7 + 101 · 2 + 100 · 9. This concept is
actually quite helpful, and can be generalise to numbers in other bases. We
typically deal with base 10, however if we replaced the powers of 10 above
with some other number k, then we can move into base k.

Example What are the last two digits of 99 and 999?

Solution The most useful observation to make in this problem is that
9 = 10 − 1. This will be extremely helpful, since we have a 10 and if we
can sort out multiples of 10, then we will be able to examine the units and
tens digits of 99 and 999. We will also make use of the binomial theorem.
First let’s consider 99.

99 = (10− 1)9 =
9

0

109 +
9

1

108 · (−1)1 +
9

2

107 · (−1)2 + . . .

+
9

8

101 · (−1)8 +
9

9

(−1)9

= 109 − 9 · 108 + 36 · 107 + · · ·+ 9 · 10− 1
= 109 − 9 · 108 + 36 · 107 + · · ·+ 89

Now, here we have to be careful. Notice, that every term before the last
89 will have a factor of 102 i.e. 100. So the number 99 will be of the form
100k + 89. Also, clearly 99 is positive, so the value of the integer k will
also be positive (despite the alternating signs we see from the binomial
expansion). Hence the last two digits of 99 is 89 .

For 999 we will do a similar thing. We have established that 99 can be
written as 100k + 89 for some integer k. But, to make our life easier,
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100k + 89 = 10(10k + 8) + 9 and let’s substitute 10k + 8 for K.

∴ 999 = 910K+9 = 99 × 910K

= 99 ×
(
(10− 1)10)K

= 99 ×
(
1010 − 10 · 109 + · · · − 10 · 101 + 1

)K
Examining the right hand bracket above, we can pull out factors of 100,
so (

1010 − 10 · 109 + · · · − 10 · 101 + 1
)K = (100m+ 1)K

for some integer m. Now, if we try to expand out (100m + 1)K , it should
be clear that all terms will have a factor of 100 in them apart from the
final term of 1K = 1. So we can say further that (100m+ 1)K = 100n+ 1
for some integer n.

∴ 999 = 99×(100n+1) = (100k+89)·(100n+1) = 100(100kn+89n+k)+89

Hence, 999 also has last digit of 89 .

In fact, all numbers 99..
.9

will have last two digits of 89.

4.1.2 Basic Divisibility Rules
These should be trivial, but below are rules for how we can quickly check
a number is divisible by any small numbers (1-12).
1. Any integer is divisible by 1.
2. The last digits is even (0, 2, 4, 6, 8).
3. The sum of the digits is divisible by 3. You can repeat this rule as

many times.
4. The last two digits are divisible by 4.
5. The last digits is 0 or 5.
6. It is divisible by both 2 and 3.
7. Double the last digit and subtract it from the number made by the

other digits. The result is divisible by 7. You can repeat this rule as
many times.

8. The last three digits are divisible by 8, or you can halve the number
three times and it is still an integer.
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9. The sum of the digits is divisible by 9. You can repeat this rule as
many times.

10. The number ends in 0.

11. Subtract and add the digits in an alternating pattern, e.g. take first
digit subtract next one add next one..., and the result is divisible by
11.

12. It is divisible by both 3 and 4.

Primes
A positive integer with exactly two positive divisors is said to be prime.
Notice that by this definition 1 is not prime. The first few prime numbers
are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, . . .

The fundamental theorem of arithmetic states that any integer greater than
1 is either a prime number or can be written as a unique product of prime
numbers. This can be proved by contradiction.

The opposite of prime numbers are known as composite numbers, which
are made up of a unique product of primes. Hence, it is clear by the
fundamental theorem of arithmetic that every integer greater than 1 is
either prime or composite.

Example Prove that there are infinitely many prime numbers.

Solution Suppose, for contradiction, that there are only finitely many
primes, 2, 3, . . . , pn, and pn is the largest prime. Now let’s create a number
N by multiplying all these primes together and adding 1.

N = (2× 3× 5× · · · × pn) + 1

Clearly, the number N has remainder 1 when divided by any prime number
in our finite list of primes. Hence, N has no prime factors, so N must
be prime. But, notice that N is larger than all other primes, so there
cannot exist a largest prime pn, and thus we have arrived at a contradiction.
Therefore, there must be infinitely many prime numbers. �

57



4 NUMBER THEORY

4.1.3 Consequences for Divisors
We will begin by defining a function Ω, which can take an input of two
integers m, n and Ω(m,n) outputs the set of integers which divide both m
and n. In other words, the set of common divisors of m and n.

Ω(m,n) = {x ∈ Z : x|m,x|n} (4.1.2)
2For example Ω(2, 4) = {−2,−1, 1, 2}, although it will make our lives
easier if we restrict ourselves to positive divisors, since if a divides b then
automatically −a also divides b. So, we can make another function Ω+,
which restricts Ω to only positive common divisors. So, Ω+(2, 4) = (1, 2).

Greatest Common Divisor
The greatest common divisor, gcd, of two numbers m,n is given by:

gcd(m,n) = max{Ω(m,n)} = max{Ω+(m,n)} (4.1.3)

Note that gcd(0, 0) does not exist since Ω(0, 0) = {. . . ,−1, 0, 1, 2, . . . } and
so there is no maximum element.

Integers m,n are said to be coprime if and only if gcd(m,n) = 1.

The gcd function lends itself to some useful properties:
• gcd(m,n) = gcd(−m,n) = gcd(m,−n) = gcd(−m,−n).
• For a non-negative integer k, gcd(k ·m, k · n) = k · gcd(m,n).
• gcd(m,n, p) = gcd(gcd(m,n), p) = gcd(m, gcd(n, p)) = gcd(n, gcd(m, p)).
• For any integer k, gcd(m+ kn, n) = gcd(m,n).

Lowest Common Multiple
We define the lowest common multiple of two integersm,n as follows:

lcm(m,n) = |m× n|
gcd(m,n) (4.1.4)

The lcm gives the smallest integer, which is a multiple of both m and
n.

2Note that the colon ‘:’ reads ‘such that’.
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Number of factors
Every integer N can be expressed as:

N = aα × bβ × cγ × . . .

where a, b, c, . . . are distinct primes and α, β, γ, ... ∈ N.

If N is a power of only one prime then N = pα. Therefore, N has α + 1
factors (1, p, . . . , pα−1, pα).

This generalises for N = aα× bβ × cγ × . . . , and it follows that the number
of factors of N is

(α + 1)(β + 1)(γ + 1) . . . (4.1.5)

This result for the number of factors is extremely useful for maths problems
generally. I would highly recommend the reader to learn this result and
try and reason why it works.

Sum of factors
If we take our number expressed as a product of distinct primes from above,
N = aα × bβ × cγ × . . . , then it also follows that the sum of factors of N
is
(
1 + a+ a2 + · · ·+ aα

) (
1 + b+ b2 + · · ·+ bβ

) (
1 + c+ c2 + · · ·+ cγ

)
. . .

(4.1.6)
or if you prefer,

k∏
i=1

pai+1
i − 1
pi − 1

 (for N = pa1
1 p

a2
2 . . . pak

k ) (4.1.7)

For instance, it is trivial that the sum of the factors of N = pα is 1 + p +
p2 + · · ·+ pα.

4.1.4 Euclidean Algorithm

The Euclidean algorithm enables us to compute iteratively the gcd of two
numbers. It makes use of the fourth bullet point in the greatest common divisor
section above.
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Given m and n, we can find gcd(m,n) as follows

1. Write a = q1b+ r1, where r1 < b

2. Write b = q2r1 + r2, where r2 < r1

3. Write r1 = q3r2 + r3, where r3 < r2...

Eventually, we will arrive at rk = 0 =⇒ rk−1 is the gcd(m,n).

Effectively, what we are doing, in say step 1, is finding the largest multiple
of b that’s less than a and the remainder is r1. Throughout, we use the fact
that gcd(m+ kn, n) = gcd(m,n) to constantly reduce our expression.

Example What is gcd(306, 657)?

Solution By the Euclidean algorithm,

657 = 2× 306 + 45
306 = 6× 45 + 36
45 = 1× 36 + 9
36 = 4× 9 (+0) ∴ gcd(306, 657) = 9

Example Prove that the fraction 21n+4
14n+3 is irreducible for every natural

number n.

Solution If the fraction is irreducible, then the numerator and denominator
must have no common factors. Thus, this would mean that they are
coprime. So, it suffices to show that 21n + 4 and 14n + 3 are coprime.
We will proceed with the Euclidean algorithm. gcd(21n+ 4, 14n+ 3):

(21n+ 4) = 1× (14n+ 3) + (7n+ 1)
(14n+ 3) = 2× (7n+ 1) + 1
(7n+ 1) = (7n+ 1)× 1 (+0)

Therefore, gcd(21n+4, 14n+3) = 1 for any n, so the fraction is irreducible.
�
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4.2 Modular Arithmetic
In modular arithmetic, we concern ourselves with the remainder when
certain numbers or expressions when divided by some other number. This
idea of examing a remainder is particularly useful. We have implicity
considered modulo 10 and 100 in the example above with the stacked
powers of 9.

For instance, with a simple example, we know all odd numbers can come
in the form either 4k + 1 or 4k + 3 for integer k. Clearly, 4k + 1 gives
remainder 1 upon division by 4 and 4k+ 3 gives remainder 3 upon division
by 4. So we can say:

4k + 1 ≡ 1 (mod 4) , 4k + 3 ≡ 3 (mod 4)

This means that odd numbers can either be 1 (mod 4) or 3 (mod 4).
However, also notice that 4k+3 can be written as 4k−1 for some different
k and hence 3 (mod 4) ≡ −1 (mod 4). Similarly, if we consider (mod 2),
then odd numbers are equal to 1 (mod 2) and even numbers 0 (mod 2).

Here are some crucial rules to bear in mind when dealing with modular
arithmetic.

Addition

• If a+ b = c, then a+ b ≡ c (mod n)
• If a ≡ b (mod n), then a+ k ≡ b+ k (mod n) for any integer k
• If a ≡ b (mod n) and c ≡ d (mod n), then a+ c ≡ b+ d (mod n)

Multiplication

• If a · b = c, then a · b ≡ c (mod n)
• If a ≡ b (mod n), then ka ≡ kb (mod n) for any integer k
• If a ≡ b (mod n), then ka ≡ kb (mod kn) for any real number k
• If a ≡ b (mod n) and c ≡ d (mod n), then a · c ≡ b · d (mod n)
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4.2.1 Fermat’s Little Theorem
Fermat’s little theorem is a fundamental idea in number theory, which helps
compute powers of integers modulo prime numbers.

The result is called Fermat’s ‘little theorem’ so as to distinguish it from
Fermat’s Last Theorem. Here are three versions of the result (all of which
are the same thing).
1. Suppose that p is a prime number and x is an integer which is not

divisible by p, then p divides xp−1 − 1.
2. Suppose that p is a prime number and x is an integer such that x 6= 0

(mod p), then xp−1 ≡ 1 (mod p).
3. Suppose that p is a prime number and x is an integer, then p divides
xp − x.

4.2.2 Chinese Remainder Theorem
The Chinese remainder theorem is a theorem which helps us solve problems
such as: ‘find all integers that leave remainder 1 when divided by 2, 3 and
5’.

A neat way of initially viewing congruences and the Chinese remainder
theorem is by looking at arithmetic sequences.

Let’s suppose we have the following two sequences of integers:

. . . ,−12,−7,−2, 3, 8, 13, 18, . . . (4.2.1)

. . . ,−15,−1, 13, 27, 41, . . . (4.2.2)
In sequence (4.2.1), each term differs by 5 and in sequence (4.2.2), each
term differs by 14. If we consider the intersection of these two sequences,
that is the new sequence formed by the terms which appear in both of the
above sequences, then we obtain the following arithmetic sequence:

. . . ,−127,−57, 13, 83, 153, . . . (4.2.3)

Notice that each term in sequence (4.2.3) differs by 70 = 5× 14. The one
thing to be aware of in this, however, is that gcd(5, 14) = 1 so 5 and 14 are
coprime. If you omit this condition that the common differences have to
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be coprime, then it is not always possible that the two sequences intersect
at all.

We do not necessarily need to restrict ourselves to two sequences either; this
will work with any number of sequences, provided that they have coprime
common differences.

Essentially, what we are saying is that given some sequences with common
differences that are pairwise coprime, the intersections of all these sequences
forms a new, unique sequence with common difference equal to the product
of all the common differences of the original sequences.

Now instead of sequences, we can formalise this idea to linear congruences
3, yielding the Chinese remainder theorem:

Given pairwise coprime integers n1, n2, . . . , nk and arbitrary integers a1, a2, . . . , ak,
the system of linear congruences

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)...
x ≡ ak (mod nk)

has a solution x, and this solution is unique (i.e. there is only one possible
solution) modulo N = n1n2 . . . nk.

Example Find the smallest positive integer x which leave a remainder
of 1, 2 and 3 when divided by 7,4 and 5 respectively.

Solution We can formalise the problem into the following congruences:

x ≡ 2 (mod 4)
x ≡ 3 (mod 5)
x ≡ 1 (mod 7)

Notice that the moduli are all pairwise coprime, so by the Chinese remainder
theorem, there exists a unique solution x (mod 4 · 5 · 7).

3If you observe carefully, an arithmetic sequence with common difference n is in fact all the possible
numbers which give a certain remainder upon division by n. For example, in (4.2.1) each term of the
sequence is 3 (mod 5).
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To solve and find this x, we will write x as follows

x = x1(5 · 7) + x2(4 · 7) + x3(4 · 5)

The beauty of this now is that we can take modulo on both sides and things
will vanish to 0. Taking (mod 4) gives x ≡ 35 · x1 ≡ 3 · x1 (mod 4). But,
we also want x ≡ 2 (mod 5). So, if x1 = 2, then we are good.

Similarly, with some strong arithmetic, we can obtain x2 = 1 and x3 =
6.

∴ x = 2 · 5 · 7 + 1 · 4 · 7 + 6 · 4 · 5
= 70 + 28 + 120
= 218

But this x is unique modulo 4 · 5 · 7 = 140, so x ≡ 218 ≡ 78 (mod 140).
Hence, the smallest positive integer which satisifies the congruences is
78 .

4.3 Perfect Squares

4.3.1 Quadratic Residues
Sometimes, it is worth checking how perfect squares behave upon division
by some certain integer. For instance, square numbers are never 2 (mod 3)
and square numbers are also always 0 (mod 4) if they are even and 1
(mod 4) if they are odd.

Example Prove the very important fact that square numbers are only 0
or 1 (mod 3) and never 2 (mod 3).

Solution Let a be an integer. We will use the result from modular
arithmetic that is a ≡ b (mod 3), then ak ≡ bk (mod 3). There are three
cases to consider,

(1) : a ≡ 0 (mod 3), then a2 ≡ 02 ≡ 0 (mod 3)
(2) : a ≡ 1 (mod 3), then a2 ≡ 12 ≡ 1 (mod 3)
(3) : a ≡ 3 (mod 3), then a2 ≡ 22 ≡ 4 ≡ 1 (mod 3) �

I will leave it as an exercise for the reader to prove the result for modulo
4.
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Example Let k be an integer such that k = 3m+ 1 for some integer m.
Find all integer solutions (x, y) to the equation

(x+ y − k)(x+ y + k) = 1 + xy

Solution Since k = 3m + 1, we can immediately substitute this into
our equation. So we are looking for pairs of integer solutions (x, y) to the
equation

(x+ y − 3m− 1)(x+ y + 3m+ 1) = 1 + xy

Expanding everything out yields

x2 + y2 + 2xy − 9m2 − 6m− 1 = 1 + xy

=⇒ x2 + y2 + xy − 2 = 9m2 + 6m = 3m(3m+ 2)

This therefore tells us that if we are to have an integer solution (x, y) to
the equation then x2 + y2 + xy − 2 must be divisible by 3. I suggest we
make a substitution now letting N = m(3m+2) so N ∈ Z. This gives

x2 + y2 + xy − 2 = 3N
x2 + y2 + xy = 3N + 2

(x− y)2 + 3xy = 3N + 2

Taking (mod 3) on both sides, we get (x − y)2 ≡ 2 (mod 3). This
implies that if exists a solution with x, y ∈ Z then (x − y)2 must give
remainder 2 upon division by 3. Of course, x − y is also an integer. But
this is a contradiction - no square number can ever be 2 (mod 3) (see
previous example). Hence, there exists no integer solutions to the equation.
�

4.3.2 Roots and Rational Numbers
Suppose that p and q are positive integers such that q

√
p is a rational

number. Then, it follows that q
√
p must be an integer.

Factors of 4n2 + 1
If you take any number of the form 4n2 + 1, where n is an integer, then
of course all the factors of it are odd, since clearly 4n2 + 1 is odd. But
it turns out further that all these factors are odds of the form 4m + 1 for
some integer m!
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We can show this amazing fact using a proof by contradiction and Fermat’s
little theorem. Since 4n2 + 1 is odd, all of its prime factors will be odd
numbers either of the form 4m + 1 or 4m + 3. It is enough to show that
4n2 + 1 has no prime factor of the form 4m+ 3.

Let’s suppose for contradiction that a prime number p = 4m + 3 divides
4n2 + 1. As we are trying to engage Fermat’s little theorem into play, it is
sensible to take (mod p) of both sides, giving

4n2 + 1 ≡ 0 (mod p) =⇒ 4n2 ≡ −1 (mod p)

Notice though 4k2 = (2k)2. By Fermat’s little theorem, we know xp−1 ≡ 1
(mod p) provided that x 6= 0 (mod p). In this case, our ‘x’ is 2k and
clearly 2k does not divide p as p is an odd prime, so we are good to go.
We have

(2k)2 ≡ −1 (mod p)
As we want to introduce a power of p − 1, it would make sense to raise
both sides to the power of p−1

2 .

∴
(
(2k)2)p−1

2 ≡ (−1)
p−1

2 (mod p) =⇒ (2k)p−1 ≡ (−1)
p−1

2 (mod p)

Now, recall that p = 4m+ 3.

∴ (2k)p−1 ≡ (−1) 4m+3−1
2 ≡ (−1)2m+1 ≡ −1 (mod p)

But this is a contradiction! Fermat’s little theorem states that we should
have (2k)p−1 ≡ 1 (mod p). Hence, there exist no factors of 4n2 + 1 which
have the form 4m + 3. We could follow a similar logic with primes p =
4m+ 1, and we would not arrive at a contradiction. �

Primes of the form an − 1
There are some nice things we can deduce about numbers of the form an−1.
If we recall (1.1.4), then a useful idea is that an−1 = (a−1)(an−1 +an−2 +
· · ·+ a+ 1).

If you take any prime number of the form an − 1, then there are some
constraints on a and n. In fact, it must be that a = 2 and n is prime. We
can go about showing this.

Suppose p is a prime, such that p = an − 1.

p = (a− 1)(an−1 + an−2 + · · ·+ a+ 1)
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This shows that p is composite (i.e. not prime) unless a−1 = 1 =⇒ a = 2.
So, p = 2n−1. For n, let’s now proceed with contradiction. Suppose that n
is not prime so it can be written as n = ab, for some integers a, b ≥ 2.

∴ p = 2ab − 1 = (2a)b − 1 = (2a − 1)(2a(b−1) + 2a(b−2) + · · ·+ 2a + 1)

As we supposed n is not prime, we had a ≥ 2. This means that 2a−1 ≥ 3,
so p would be composite and not prime. This is a contradiction! Hence, n
must be prime for p to be prime.

So, primes of the form an−1 have a = 2 and n prime. In fact, these primes
are known as Mersenne primes.

4.3.3 Fermat’s Last Theorem
This idea is pretty useless and pointless as far as an olympiad problem is
concerned, but it’s cool! Fermat’s Last Theorem states that there are no
integer solutions (x, y, z) to the equation

xn + yn = zn for n ≥ 3 (4.3.1)

4.4 Integer Equations
Many times, we would have to concern ourselves with solving an equation
(typically with two variables x, y), where we must restrict our variables to
integer values only. As a result, no integer solutions could exist, or some
integer solutions could exist, or even infinite integer solutions could exist.

In general, finding integer solutions to an equation requires a very systematic
approach, and sometimes brute-force/trial and error can help break into
an equation as it is always a good idea to try and find some small cases
which work. Below are three common forms of equations we could come
across.

4.4.1 Difference of two squares
Here, we will consider integer solutions (x, y) to the equation

x2 − y2 = k (4.4.1)

For any equation of that form, we should turn it into (x + y)(x− y) = k,
and then consider the possible factorisations of k.
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For example, if k is prime then it can only be factored into 1× k or k× 1,
so x + y = 1 and x − y = k, or x + y = k and x − y = 1. This gives us
simultaneous equations which we can easily use to compute a possible pair
(x, y). Also, note that if x is a solution, then so is −x due to the squares.

However, if a number factors into an odd factor multiplied by an even
factor, then we cannot get an integer solution. Take the example k = 12 =
4× 3. If we take x+ y = 4, x− y = 3, this gives 2x = 7 but we need x as
an integer.

On the other hand, if we use the factoring of k = 6 × 2, then x + y = 6,
x− y = 2 and 2x = 8, so (x, y) = (4, 2). This way, in the case k = 12 the
only integer solutions are (4, 2), (−4,−2), (4,−2) and (−4, 2).

By the same logic, there exist no integer solutions in the case k = 2 or
k = 6.

4.4.2 Bezout’s Identity
Recall the Euclidean algorithm for computing the gcd of two numbers. We
can also work backwards from this, which gives us Bezout’s identity.

If gcd(a, b) = d, then there exists integer solutions (x, y) to the equation

ax+ by = d (4.4.2)
Furthermore, there exist integer solutions (x, y) to the equation

ax+ by = n (4.4.3)

if and only if d|n.

4.4.3 Pell’s Equation
Pell’s equation concerns integer solutions (x, y) to equations of the form

x2 − ny2 = 1 (4.4.4)
where n is a nonsquare positive integer. It can be shown that there are
infinitely many solutions and they generate recursively from a simple,
fundamental solution.
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Instead, if n was a square, then the only possible solutions are (x, y) =
(−1, 0) and (x, y) = (1, 0). This can be shown by considering a difference
of two squares factorisation and considering that 1 = 1 × 1 or 1 = −1 ×
−1.

Example Let Z[
√

2] denote the set of all real numbers r of form
r = a + b

√
2, a, b ∈ Z. For such an r define N(r) = a2 − 2b2. Show that

N(rs) = N(r)N(s), and hence show that there exist infinitely many pairs
of integers (a, b) with a2 − 2b2 = ±1.

Solution Let r = a + b
√

2 and s = c + d
√

2 (a, b, c, d) ∈ Z. Therefore,
rs = (ac+ 2bd) + (ad+ bc)

√
2.

=⇒ N(rs) = (ac+ 2bd)2 − 2(ad+ bc)2

= a2c2 + 4abcd+ 4b2d2 − 2a2d2 − 4abcd− 2b2c2

= a2(c2 − 2d2)− 2b2(c2 − 2d2)
=
(
a2 − 2b2) (c2 − 2d2) = N(r)N(s)

The equation a2−2b2 = 1 is effectively N(r) = 1, where r = a+b
√

2(a, b ∈
Z). We can use the property that N(rs) = N(r)N(s) to prove that there
are infinitely many integers satisfying N(r) = 1.

Notice that 1n = 1 for any n ∈ Z. Therefore if we know one solution
(a, b) for which N(r) = 1 then N(r2) = N(r)N(r) = 12 = 1. Similarly
N(r3) = 1, N(r4) = 1 and so on.

It is not difficult to spot that (a, b) = (3, 2) is a solution since 32−2(2)2 = 1.
Hence, it is also true that N

(
(3 + 2

√
2)n

)
= 1 for all n ∈ N. Since the set

N is an infinite set, there exist infinitely many pairs of integers satisfying
a2 − 2b2 = 1.

A similar thing can be done for a2 − 2b2 = N(r) = −1. We use the fact
that (−1)n = −1 for all odd n. A simple solution is (a, b) = (1, 1) since
12 − 2(1)2 = −1. So, it is also true that N

(
(1 +

√
2)n

)
= −1 for all odd

numbers n. Since the set of odd numbers is an infinite set, there exist
infinitely many pairs of integers satisfying a2 − 2b2 = −1. �
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